Аэродинамические трубы – —

Содержание

3. Аэродинамические трубы

3.1. Классификация аэродинамических труб

Главным методом исследования является метод испытаний в аэродинамических трубах. Аэродинамическая труба представляет собой физический прибор, позволяющий получить в рабочей части, где располагаются исследуемые модели, равномерный прямолинейный установившийся поток воздуха определенной скорости.

В основу эксперимента с использованием аэродинамических труб (АДТ) положен принцип обращения движения, согласно которому картина взаимодействия тела и потока, его обтекающего, не изменяется от того, набегает поток на неподвижное тело или тело движется в неподвижной среде.

По конструктивным признакам аэродинамические трубы можно разбить на два класса:

а) трубы незамкнутого типа;

б) трубы замкнутого типа (с замкнутым потоком).

В зависимости от скорости потока в рабочей части АДТ делятся на:

а) дозвуковые 0 < M < 0,8; обычно в этом интервале чисел М выделяют диапазон малых дозвуковых скоростей, соответствующий числам Маха M < 0,3, при которых газовый поток можно считать потоком несжимаемой жидкости;

б) трансзвуковые 0,8 < M < 1,2;

а) сверхзвуковые 1,2 < M < 5;

а) гиперзвуковые M > 5.

По виду рабочей части аэродинамические трубы делятся на трубы с открытой рабочей частью и трубы с закрытой рабочей частью (рис.2). Встречаются трубы с герметической камерой вокруг рабочей части (камера Эйфеля).

В зависимости от продолжительности работы различают АДТ периодического (кратковременного) действия и непрерывного действия.

3.2. Дозвуковые аэродинамические трубы

На рис.3 приведена схема дозвуковой незамкнутой АДТ. Из рисунка видно, что вентилятор 6, приводимый во вращение электродвигателем 7, засасывает в трубу воздух через сопло 1. Поток воздуха, пройдя спрямляющую решетку (хонейкомб) 2 и сетку 3, становится плоскопараллельным и входит в рабочую часть 4, где установлена испытуемая модель. Из рабочей части поток попадает в диффузор 5 и затем выбрасывается в окружающее пространство.

На рис. 4 представлена схема простейшей аэродинамической трубы прямого действия с открытой рабочей частью, работающей в режиме нагнетания. Основным требованиям к трубе является получение качественного потока. Выполнение этого требования в полном объеме является наибольшей трудностью при создании трубы. Прямолинейность и равномерность потока обеспечивается главным образом, геометрической формой внутреннего контура, стенок и внутренних устройств аэродинамической трубы, обеспечением плавности аэродинамического контура в области сопла и рабочей части.

Не менее важным, но значительно более сложным по своему выполнению является требование обеспечения малой начальной турбулентности потока в рабочей части трубы

(здесь– среднеквадратичная величина пульсационной составляющей скорости). Высокая степень турбулентности или завихренности потока оказывает существенное влияние на результаты опытов, а иногда искажает их, так как приводит к изменению качественного характера обтекания.

Существенным требованием к аэродинамической трубе является требование отсутствия пульсаций скорости воздушного потока. Возникновение пульсаций в основном связано с периодическими вихрями, срывающимися с различных плохо обтекаемых элементов трубы (вентиляторная установка, обтекатели, выступы) и неплавностями общего аэродинамического контура трубы. Улучшение поля скоростей и уменьшение скосов и степени турбулентности потока может быть достигнуты за счет исправления аэродинамического контура трубы, применения коллектора с двойным поджатием, установки в форкамере специальных выравнивающих устройств – хонейкомбов и детурбулизирующих сеток.

В замкнутых трубах, которые строятся как с открытой, так и с закрытой рабочей частью, поток, пройдя рабочую часть и диффузор, направляется в обратный канал и через сопло вновь возвращается в рабочую часть, т.е. поворачивает на 360о. Поворот осуществляется в четырех коленах канала. В каждом колене поток поворачивается на 90о. В этих коленах устанавливаются направляющие профилированные лопатки, которые плавно, с минимальными потерями, поворачивают поток и способствуют получению равномерного поля скоростей и давлений в рабочей части. Для устранения закрутки потока вентилятором за его рабочим колесом устанавливается спрямляющий аппарат.

Форкамера служит для выравнивания и успокоения потока. В ней устанавливаются хонейкомб и детурбулизирующие сетки. Размеры форкамеры существенно влияют на равномерность поля скоростей в рабочей части. Чем больше форкамера, тем равномернее поле.

Хонейкомб предназначен для уменьшения скоса потока и разрушения крупных вихрей. Хонейкомб представляет собой сотообразную решетку, состоящую из ячеек длиной 5…10 калибров при толщине стенок порядка 0,3…1,5 мм. Отношение поперечного размера ячейки к поперечному размеру форкамеры выбирается в пределах 1/50 … 1/100. Хонейкомб выравнивает поток по направлению, разбивая крупные вихри, а также уменьшает неравномерность распределения продольных скоростей. В то же время он вносит возмущения в поток за счет аэродинамического следа, образующегося за стенками ячеек. Поэтому в тех трубах, где в форкамере кроме хонейкомба ничего больше не устанавлено, для успокоения возмущений необходимо увеличивать расстояние между хонейкомбом и соплом.

Детурбулизирующие сетки способствуют выравниванию поля скоростей и уменьшению начальной турбулентности потока в рабочей части трубы.

Сопло служит для формирования прямолинейного, равномерного потока в рабочей части, разгона потока воздуха от минимальной скорости на входе до расчетной скорости на выходе в рабочую часть. Поперечное сечение сопла может быть круглым, эллиптическим, прямоугольным, квадратным и восьмигранным. Дозвуковые сопла имеют вид сужающихся каналов, спрофилированных особым образом. Форма образующей сопла, его длина и степень поджатия определяют не столько величину скорости, сколько характер поля скоростей. Сопло, благодаря поджатию потока (уменьшению площади поперечного сечения на выходе из него по сравнению с площадью входа), дополнительно к перечисленным выше устройствам устраняет неравномерности распределения скоростей. Степень поджатия потока определяется как

. Неравномерность скорости в рабочей части враз меньше неравномерности скорости на входе в сопло. Поджатие потока в сопле способствует уменьшению турбулентности потока в рабочей части.

Рабочая часть – это пространство между соплом и диффузором. Здесь устанавливаются модели для испытания, здесь же располагаются аэродинамические весы и другие приборы. Газовый поток в рабочей части трубы должен иметь равномерное поле скоростей и давлений. Рабочая часть может быть открытой (не иметь стенок), закрытой (ограничена стенками) или иметь вид герметической камеры (рис.2). Открытая рабочая часть обеспечивает свободный доступ к модели и удобство наблюдений. Однако трубы с открытой рабочей частью требуют дополнительной мощности на восполнение потерь, вызванных взаимодействием свободной струи с окружающим воздухом.

Для уменьшения потребной мощности привода для труб с большими скоростями (м/с) применяют закрытую рабочую часть. Аэродинамические характеристики потока в трубе с закрытой рабочей частью лучше, чем в трубе с открытой рабочей частью.

Диффузор располагается сразу за рабочей частью. Он представляет собой спрофилированный канал, который служит для уменьшения скорости потока. Дозвуковой диффузор – расширяющийся вниз по течению канал, в котором происходит торможение потока.

В качестве двигателя для вентилятора аэродинамических труб применяются электромоторы постоянного тока, которые дают возможность изменять в широких пределах число оборотов вентилятора и вместе с этим скорость потока в рабочей части.

В простейшей аэродинамической трубе (рис.4) поток в рабочей части имеет, по сравнению с трубами всасывания (с закрытой рабочей частью, рис.3) и с трубами замкнутого типа, невысокое качество и характеризуется:

  • большой неравномерностью – различие величины скорости в различных точках сечения потока в рабочей части достигает 3 … 5 %;

  • значительным скосом потока – не параллельность векторов скорости в разных точках достигает 1о … 3о;

  • повышенной начальной турбулентностью .

Однако они более простые в эксплуатации и предназначены, как правило, для получения качественной картины обтекания исследуемых тел. Поток газа, сформированный соплом АДТ с открытой рабочей частью, имеет структуру и свойства затопленной турбулентной струи.

studfiles.net

АЭРОДИНАМИЧЕСКАЯ ТРУБА • Большая российская энциклопедия

АЭРОДИНАМИ́ЧЕСКАЯ ТРУБА́, экс­пе­рим. ус­та­нов­ка для ис­сле­до­ва­ния яв­ле­ний и про­цес­сов, со­про­во­ж­даю­щих об­те­ка­ние тел по­то­ком га­за (обыч­но воз­ду­ха). Ис­сле­до­ва­ния в А. т. ос­но­ва­ны на прин­ци­пе об­ра­ти­мо­сти дви­же­ния, со­глас­но ко­то­ро­му пе­ре­ме­ще­ние те­ла в не­под­виж­ном воз­ду­хе мо­жет быть за­ме­не­но дви­же­ни­ем воз­ду­ха от­но­си­тель­но не­под­виж­но­го те­ла. Экс­пе­ри­мен­ты в А. т. про­во­дят, как пра­ви­ло, на гео­мет­ри­че­ски по­доб­ных мо­де­лях, ре­же на са­мих ори­ги­на­лах. В А. т. экс­пе­ри­мен­таль­но оп­ре­де­ля­ют дей­ст­вую­щие на те­ло аэ­ро­ди­на­мич. си­лы и мо­мен­ты, ис­сле­ду­ют рас­пре­де­ле­ние дав­ле­ний и темп-ры по его по­верх­но­сти, ви­зуа­ли­зи­ру­ют про­цесс об­те­ка­ния те­ла по­то­ком, изу­ча­ют аэ­ро­уп­ру­гость и др.

А. т. со­дер­жит ра­бо­чую часть – пря­мо­уголь­ную или ци­лин­д­рич. ка­ме­ру, где раз­ме­ща­ет­ся мо­дель ис­сле­дуе­мо­го объ­ек­та, и ком­плекс уст­ройств, по­сред­ст­вом ко­то­рых в ра­бо­чей час­ти соз­да­ёт­ся рав­но­мер­ный, од­но­род­ный по­ток с за­дан­ны­ми ско­ро­стью, плот­но­стью и темп-рой га­за. По спо­со­бу об­ра­зо­ва­ния по­то­ка А. т. под­раз­де­ля­ют на ком­прес­сор­ные не­пре­рыв­но­го дей­ст­вия и бал­лон­ные; по ком­по­нов­ке кон­ту­ра (пу­ти дви­же­ния по­то­ка) – на замк­ну­тые и ра­зомк­ну­тые. В ком­прес­сор­ных А. т. по­ток га­за соз­даёт­ся ком­прес­со­ром; они име­ют вы­со­кий кпд и удоб­ны в экс­плуа­та­ции, но для них тре­бу­ют­ся мощ­ные ком­прес­со­ры с боль­шим рас­хо­дом га­за. В бал­лонных А. т. газ под дав­ле­ни­ем ис­те­ка­ет из бал­ло­нов; та­кие А. т. про­ще ком­прес­сор­ных по кон­ст­рук­ции, но ме­нее эко­но­мич­ны из-за по­те­ри час­ти энер­гии по­то­ка при его ре­гу­ли­ро­ва­нии, кро­ме то­го, про­дол­жи­тель­ность их ра­бо­ты (от де­сят­ков се­кунд до неск. ми­нут) ог­ра­ни­че­на за­па­сом газa в бал­ло­нах. Замк­ну­тые А. т. по срав­не­нию с ра­зомк­ну­ты­ми име­ют бо­лее вы­со­кий кпд (за счёт ис­поль­зо­ва­ния зна­чит. час­ти ки­не­тич. энер­гии, ос­тав­шей­ся в га­зо­вом по­то­ке по­сле его про­хо­ж­де­ния че­рез ра­бо­чую часть тру­бы), но и боль­шие раз­ме­ры.

В за­ви­си­мо­сти от реа­ли­зуе­мо­го диа­па­зо­на Ма­ха чи­сел ($M$) раз­ли­ча­ют А. т. доз­ву­ко­вые ($M=$ 0,15–0,7), транс­зву­ко­вые ($M=$ 0,7–1,3), сверх­зву­ко­вые ($M=$ 1,3–5) и ги­пер­зву­ко­вые ($M=$ 5–25).

Рис. 1. Схема дозвуковой компрессорной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – направление потока; 6 – рабочая часть с мо…

В доз­ву­ко­вых А. т. (рис. 1) ис­сле­ду­ют аэ­ро­ди­на­мич. ха­рак­те­ри­сти­ки доз­ву­ко­вых са­мо­лё­тов, вер­то­лё­тов, а так­же ха­рак­те­ри­сти­ки сверх­зву­ко­вых са­мо­лё­тов на взлёт­но-по­са­доч­ных ре­жи­мах; с их по­мо­щью изу­ча­ют ха­рак­тер об­те­ка­ния воз­душ­ным по­то­ком ав­то­мо­би­лей и др. на­зем­ных транс­порт­ных средств, зда­ний, мос­тов, ба­шен и др. объ­ек­тов. Ра­бо­чая часть та­ких А. т. обыч­но име­ет вид ци­лин­д­ра с по­пе­реч­ным се­че­ни­ем в фор­ме кру­га, пря­мо­уголь­ни­ка или эл­лип­са. Пе­ред ра­бо­чей ча­стью на­хо­дят­ся фор­ка­ме­ра и со­пло – кон­фу­зор, обес­пе­чива­ю­щие вы­со­кую рав­но­мер­ность воз­душ­но­го по­то­ка. В на­ча­ле фор­ка­ме­ры сто­ит ре­шёт­ка из ка­либ­ро­ван­ных тру­бок для уст­ра­не­ния ско­сов по­то­ка и раз­мель­че­ния круп­ных вих­рей – хо­ней­комб. За ре­шёт­кой рас­по­ла­га­ют­ся сет­ки, вы­рав­ни­ваю­щие ско­ро­сти в по­пе­реч­ном се­че­нии по­то­ка и умень­шаю­щие тур­бу­лент­ные пуль­са­ции. Из ра­бо­чей час­ти че­рез диф­фу­зор и ко­ле­на с по­во­рот­ны­ми ло­пат­ка­ми, умень­шаю­щи­ми по­те­ри энер­гии, по­ток по­сту­па­ет в ком­прес­сор. Да­лее рас­по­ла­га­ют­ся об­рат­ный ка­нал с диф­фу­зо­ром, ко­ле­на по­во­рот­ных ло­па­ток и воз­ду­хо­ох­ла­ди­тель, под­дер­жи­ваю­щий по­сто­ян­ную темп-ру га­за в ра­бо­чей час­ти. Эл­лип­тич. се­че­ние ра­бо­чей час­ти круп­ней­шей в Рос­сии до­зву­ко­вой А. т. име­ет раз­ме­ры 12×24 м2. Мощ­ность ком­прес­со­ров доз­ву­ко­вых А. т. – от со­тен кВт до неск. де­сят­ков МВт.

Рис. 2. Схема баллонной трансзвуковой эжекторной аэродинамической трубы: 1 – хонейкомб; 2 – сетки; 3 – форкамера; 4 – конфузор; 5 – перфорированная рабочая часть с модель…

Транс­зву­ко­вая ком­прес­сор­ная А. т. по схе­ме ана­ло­гич­на доз­ву­ко­вой. Для реа­ли­за­ции не­пре­рыв­но­го пе­ре­хо­да че­рез ско­рость зву­ка в ней ис­поль­зу­ет­ся до­зву­ко­вое со­пло и ра­бо­чая часть с ще­ле­вы­ми или пер­фо­ри­ро­ван­ны­ми стен­ка­ми; под­би­рая фор­му и раз­мер пер­фо­ра­ции, мож­но пре­дот­вра­тить от­ра­же­ние от сте­нок волн сжа­тия и раз­ре­же­ния, воз­ни­каю­щих при об­те­ка­нии мо­дели. Пром. транс­зву­ко­вые А. т. име­ют по­пе­реч­ные раз­ме­ры ра­бо­чей час­ти до 3 м, мощ­ность ком­прес­со­ров дос­ти­га­ет 100 МВт и бо­лее. В бал­лон­ных транс­зву­ко­вых А. т. для соз­да­ния тре­буе­мо­го га­зо­во­го по­то­ка при­ме­ня­ют эжек­то­ры (рис. 2).

Рис. 3. Схема сверхзвуковой баллонной аэродинамической трубы: 1 – баллонсо сжатым воздухом; 2 – трубопровод; 3 – регулирующий дроссель; 4 – выравнивающие сетки; 5 – хоней…

В сверх­зву­ко­вых А. т. для по­лу­че­ния тре­буе­мых ско­ро­стей га­за ис­поль­зу­ют сверх­зву­ко­вое со­пло (т. н. со­пло Ла­ва­ля), со­стоя­щее из су­жаю­щей­ся (доз­ву­ко­вой) и рас­ши­ряю­щей­ся (сверх­зву­ко­вой) час­тей; в ми­ни­маль­ном (кри­ти­че­ском) се­че­нии со­пла ско­рость га­за рав­на ско­рости зву­ка. Чис­ло $M$, по­лу­чае­мое в ра­бо­чей час­ти, оп­ре­де­ля­ет­ся от­но­ше­ни­ем пло­ща­дей се­че­ния ра­бо­чей час­ти и кри­тич. се­че­ния со­пла. Тор­мо­же­ние сверх­зву­ко­во­го по­то­ка по­сле ра­бо­чей час­ти со­про­во­ж­да­ет­ся вол­но­вы­ми по­те­ря­ми пол­но­го дав­ле­ния, свя­зан­ны­ми с об­ра­зо­вани­ем скач­ков уп­лот­не­ния. Мощ­но­сти ком­прес­со­ров круп­ных сверх­зву­ко­вых А. т. с ха­рак­тер­ны­ми раз­ме­ра­ми по­пе­реч­но­го се­че­ния ра­бо­чей час­ти 1,5 × 2,5 м2 со­став­ля­ют 50–100 МВт. В не­замк­ну­той пря­мо­точ­ной бал­лон­ной сверх­зву­ко­вой А. т. (рис. 3) нет об­рат­но­го ка­на­ла, за­дан­ное дав­ле­ние в фор­ка­ме­ре (по ме­ре ис­те­че­ния га­за из бал­ло­нов) под­дер­жи­ва­ет­ся с по­мо­щью ре­гу­ли­рую­ще­го дрос­се­ля.

Мо­де­ли­ро­ва­ние ги­пер­зву­ко­во­го по­лё­та тре­бу­ет вос­про­из­ве­де­ния в А. т. дав­ле­ния тор­мо­же­ния до со­тен МПа и темп-ры тор­мо­же­ния до 10К. При чис­ле МO 4,5 воз­дух в А. т. не­об­хо­ди­мо на­гре­вать для пре­дот­вра­ще­ния его кон­ден­са­ции, от­че­го су­ще­ст­вен­но из­ме­ня­ют­ся свой­ст­ва по­то­ка, вы­те­каю­ще­го из со­пла, и он ста­но­вит­ся прак­ти­че­ски не­при­год­ным для про­ве­де­ния аэ­ро­ди­на­мич. экс­пе­ри­мен­та. Обыч­но ис­сле­до­ва­ния ги­пер­зву­ко­вых ЛА про­во­дят на ком­плек­се экс­пе­рим. ус­та­но­вок, по­сколь­ку не су­ще­ст­ву­ет А. т., ко­то­рая од­на обес­пе­чи­ла бы все не­об­ходи­мые для мо­де­ли­ро­ва­ния та­ко­го по­лё­та ус­ло­вия.

Рис. 4. Схема баллонной гиперзвуковой аэродинамической трубы: 1 – баллонс высоким давлением; 2 – трубопровод; 3 – регулирующий дроссель; 4 – подогреватель; 5 – форкамерас…

Ги­пер­зву­ко­вые бал­лон­ные А. т. «клас­сич. ти­па» по­доб­ны сверх­зву­ко­вым бал­лон­ным А. т. со вре­ме­нем дей­ст­вия по­ряд­ка де­сят­ков се­кунд. В та­ких тру­бах по­дог­рев воз­ду­ха осу­ще­ст­в­ля­ет­ся в оми­че­ских, элек­тро­ду­го­вых или кау­пер­ных по­дог­ре­ва­те­лях. Мощ­ность по­дог­ре­ва­те­лей для труб с се­че­ни­ем ра­бо­чей час­ти 1 м2 cоставляет бо­лее 10 MBт. Макс. давлениe в А. т. с ду­го­вым по­до­гре­ва­телем по­ряд­ка 20 МПа, что по­зво­ля­ет мо­де­ли­ро­вать по­лёт ги­пер­зву­ко­вых ЛА толь­ко на боль­ших вы­со­тах. Боль­шой пе­ре­пад дав­ле­ний, не­об­хо­ди­мый для ги­пер­зву­ко­вых А. т., обес­пе­чи­ва­ет­ся сис­те­мой эжек­то­ров или ва­ку­ум­ной ём­ко­стью (рис. 4).

Ряд важ­ней­ших осо­бен­но­стей ги­пер­зву­ко­во­го по­лё­та мо­де­ли­ру­ет­ся в раз­лич­ных спец. га­зо­ди­на­мич. ус­та­нов­ках. Для ис­сле­до­ва­ний при боль­ших дав­ле­ни­ях тор­мо­же­ния и на­тур­ных Рей­нольд­са чис­лах ши­ро­ко при­ме­ня­ют удар­ные и им­пульс­ные А. т. со вре­ме­нем дей­ст­вия 0,005–0,1 с. Те­п­ло­за­щит­ные по­кры­тия ис­сле­ду­ют в те­п­ло­вых А. т. с элек­тро­ду­го­вы­ми по­дог­ре­ва­те­ля­ми. По­лё­ты на очень боль­ших вы­со­тах мо­де­ли­ру­ют в ва­ку­умных А. т., обес­пе­чи­ваю­щих дав­ле­ние по­ряд­ка 10–3 Па и дли­тель­ность экс­пе­ри­мен­та до 1 ча­са. Аэ­ро­аку­стич. А. т. пред­на­зна­че­ны для ис­сле­до­ва­ния влия­ния аку­стич. по­лей на проч­ность кон­ст­рук­ции изу­чае­мо­го объ­ек­та, ра­бо­ту при­бор­ных от­се­ков и др. От обыч­ных А. т. они от­ли­ча­ют­ся тем, что их ра­бо­чая часть за­щи­ще­на от внеш­них шу­мов (ра­бо­таю­щих си­ло­вых ус­та­но­вок и вен­ти­ля­то­ров А. т.), а её стен­ки по­кры­ты ма­те­риа­лом, по­гло­щаю­щим зву­ко­вые вол­ны, воз­ни­каю­щие при об­те­ка­нии мо­де­ли и ра­бо­те ус­та­нов­лен­ных на ней дви­га­те­лей.

Управ­ле­ние А. т. и об­ра­бот­ка дан­ных, по­лу­чае­мых в хо­де экс­пе­ри­мен­тов с на­тур­ны­ми объ­ек­та­ми или их мо­де­ля­ми, осу­ще­ст­в­ля­ет­ся с по­мо­щью ЭВМ.

По­яв­ле­ние и раз­ви­тие А. т. тес­но свя­за­но с раз­ви­ти­ем авиа­ции. Пер­вые А. т. по­строе­ны в 1871 В. А. Паш­ке­ви­чем в Рос­сии и Ф. Уэн­хе­мом в Ве­ли­ко­бри­та­нии, не­сколь­ко позд­нее К. Э. Ци­ол­ков­ским (1897), брать­я­ми У. и О. Райт (1901), Н. Е. Жу­ков­ским (1902) и др. В 1920–30-х гг. раз­ви­тие А. т. шло в осн. по пу­ти уве­ли­че­ния их мощ­но­сти и раз­ме­ров ра­бо­чей час­ти. В 1925 в ЦАГИ вве­де­на в дей­ст­вие круп­ней­шая для то­го вре­ме­ни А. т. С сер. 1940-х гг. на­ча­ла бы­ст­ры­ми тем­па­ми раз­ви­вать­ся ре­ак­тив­ная авиа­ция, что об­ус­ло­ви­ло соз­да­ние круп­ных транс­зву­ко­вых и сверх­зву­ко­вых А. т. В 1946 в ЦАГИ соз­да­на пер­вая в ми­ре транс­зву­ко­вая А. т. с пер­фо­ри­ро­ван­ной ра­бо­чей ча­стью, обес­пе­чив­шая прин­ци­пи­аль­но но­вые воз­мож­но­сти для про­ве­де­ния ис­сле­до­ва­ний в об­лас­ти пе­ре­хо­да че­рез ско­рость зву­ка. Раз­ви­тие ги­пер­зву­ко­вых А. т. и соз­да­ние спец. ги­пер­зву­ко­вых га­зо­ди­на­мич. ус­та­но­вок свя­за­но с по­яв­ле­ни­ем в 1960-х гг. бал­ли­стич. ра­кет и спус­кае­мых кос­мич. ап­па­ра­тов. С це­лью уве­ли­че­ния чи­сел Рей­нольд­са в А. т. для при­бли­же­ния к на­тур­ным зна­че­ни­ям в 1980-е гг. бы­ла реа­ли­зо­ва­на кон­цеп­ция крио­ген­ной аэ­ро­ди­на­мич. тру­бы.

bigenc.ru

Аэродинамическая труба — это… Что такое Аэродинамическая труба?

        установка, создающая поток воздуха или газа для эксперимент, изучения явлений, сопровождающих обтекание тел. С помощью А. т. определяются силы, возникающие при полёте самолётов и вертолётов, ракет и космических кораблей, при движении подводных судов в погруженном состоянии; исследуются их устойчивость и управляемость; отыскиваются оптимальные формы самолётов, ракет, космических и подводных кораблей, а также автомобилей и поездов; определяются ветровые нагрузки, а также нагрузки от взрывных волн, действующие на здания и сооружения — мосты, мачты электропередач, дымовые трубы и т. п. В специальных А. т. исследуется нагревание и теплозащита ракет, космических кораблей и сверхзвуковых самолётов.

         Опыты в А. т. основываются на принципе обратимости движения, согласно которому перемещение тела относительно воздуха (или жидкости) можно заменить движением воздуха, набегающего на неподвижное тело. Для моделирования движения тела в покоящемся воздухе необходимо создать в А. т. равномерный поток, имеющий в любых точках равные и параллельные скорости (равномерное поле скоростей), одинаковые плотность и температуру. Обычно в А. т. исследуется обтекание модели проектируемого объекта или его частей и определяются действующие на неё силы. При этом необходимо соблюдать условия, которые обеспечивают возможность переносить результаты, полученные для модели в лабораторных условиях, на полноразмерный натурный объект (см. Моделирование, Подобия теория). При соблюдении этих условий Аэродинамические коэффициенты для исследуемой модели и натурного объекта равны между собой, что позволяет, определив аэродинамический коэффициент в А. т., рассчитать силу, действующую на натуру (например, самолёт).

         Прототип А. т. был создан в 1897 К. Э. Циолковским, использовавшим для опытов поток воздуха на выходе из центробежного вентилятора. В 1902 Н. Е. Жуковский построил А. т., в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/сек. Первые А. т. разомкнутой схемы были созданы Т. Стантоном в Национальной физической лаборатории в Лондоне в 1903 и Н. Е. Жуковским в Москве в 1906, а первые замкнутые А. т. — в 1907—1909 в Гёттингене Л. Прандтлем и в 1910 Т. Стантоном. Первая А. т. со свободной струей в рабочей части была построена Ж. Эйфелем в Париже в 1909. Дальнейшее развитие А. т. шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель), которая является одной из основных характеристик А. т.

         В связи с развитием артиллерии, реактивной авиации и ракетной техники появляются сверхзвуковые А. т., скорость потока в рабочей части которых превышает скорость распространения звука. В аэродинамике больших скоростей скорость потока или скорость полёта летательных аппаратов характеризуется числом М = v/a (т. е. отношением скорости потока v к скорости звука а). В соответствии с величиной этого числа А. т. делят на 2 основные группы: дозвуковые, при М М > 1.

         Дозвуковые аэродинамические трубы. Дозвуковая А. т. постоянного действия (рис. 1) состоит из рабочей части 1, обычно имеющей вид цилиндра с поперечным сечением в форме круга или прямоугольника (иногда эллипса или многоугольника). Рабочая часть А. т. может быть закрытой или открытой (рис. 2, а и б), а если необходимо создать А. т. с открытой рабочей частью, статическое давление в которой не равно атмосферному, струю в рабочей части отделяют от атмосферы т. н. камерой Эйфеля (рис. 2) (высотной камерой). Исследуемая модель 2 (рис. 1) крепится державками к стенке рабочей части А. т. или к аэродинамическим весам 3. Перед рабочей частью расположено Сопло 4, которое создаёт поток газа с заданными и постоянными по сечению скоростью, плотностью и температурой (6 — спрямляющая решётка, выравнивающая поле скоростей). Диффузор 5 уменьшает скорость и соответственно повышает давление струи, выходящей из рабочей части. Компрессор (вентилятор) 7, приводимый в действие силовой установкой 8, компенсирует потери энергии струи; направляющие лопатки 9 уменьшают потери энергии воздуха, предотвращая появление вихрей в поворотном колене; обратный канал 12 позволяет сохранить значительную часть кинетической энергии, имеющейся в струе за диффузором. Радиатор 10 обеспечивает постоянство температуры газа в рабочей части А. т. Если в каком-либо сечении канала А. т. статическое давление должно равняться атмосферному, в нём устанавливают клапан 11.

         Размеры дозвуковых А. т. колеблются от больших А. т. для испытаний натурных объектов (например, двухмоторных самолётов) до миниатюрных настольных установок.

         А. т., схема которой приведена на рис. 1, относится к типу т. н. замкнутых А. т. Существуют также разомкнутые А. т., в которых газ к соплу подводится из атмосферы или специальных ёмкостей. Существенной особенностью дозвуковых А. т. является возможность изменения скорости газа в рабочей части за счёт изменения перепада давления.

         Согласно теории подобия, для того чтобы аэродинамические коэффициенты у модели и натуры (самолёта, ракеты и т. п.) были равны, необходимо, кроме геометрического подобия, иметь одинаковые значения чисел М и Рейнольдса числа Re в А. т. и в полёте (Re = ρvl/μ, ρ — плотность среды, μ — динамич. вязкость, l — характерный размер тела). Чтобы обеспечить эти условия, энергетическая установка, создающая поток газа в А. т., должна обладать достаточной мощностью (мощность энергетической установки пропорциональна числу М, квадрату числа Re и обратно пропорциональна статическому давлению в рабочей части pc.

         Сверхзвуковые аэродинамические трубы. В общих чертах схемы сверхзвуковой и дозвуковой А. т. аналогичны (рис. 1 и 3). Для получения сверхзвуковой скорости газа в рабочей части А. т. применяют т. н. сопло Лаваля, которое представляет собой сначала сужающийся, а затем расширяющийся канал. В сужающейся части скорость потока увеличивается и в наиболее узкой части сопла достигает скорости звука, в расширяющейся части сопла скорость становится сверхзвуковой и увеличивается до заданного значения, соответствующего числу М в рабочей части. Каждому числу М отвечает определённый контур сопла. Поэтому в сверхзвуковых А. т. для изменения числа М в рабочей части применяют сменные сопла или сопла с подвижным контуром, позволяющим менять форму сопла.

         В диффузоре сверхзвуковой А. т. скорость газа должна уменьшаться, а давление и плотность возрастать, поэтому его делают, как и сопло, в виде сходящегося — расходящегося канала. В сходящейся части сверхзвуковая скорость течения уменьшается, а в некотором сечении возникает скачок уплотнения (Ударная волна), после которого скорость становится дозвуковой. Для дальнейшего замедления потока контур трубы делается расширяющимся, как у обычного дозвукового диффузора. Для уменьшения потерь диффузоры сверхзвуковых А. т. часто делают с регулируемым контуром, позволяющим изменять минимальное сечение диффузора в процессе запуска установки.

         В сверхзвуковой А. т. потери энергии в ударных волнах, возникающих в диффузоре, значительно больше потерь на трение и вихреобразование. Кроме того, значительно больше потери при обтекании самой модели, поэтому для компенсации этих потерь сверхзвуковые А. т. имеют многоступенчатые компрессоры и более мощные силовые установки, чем дозвуковые А. т.

         В сверхзвуковом сопле по мере увеличения скорости воздуха уменьшаются его температура Т и давление р, при этом относительная влажность воздуха, обычно содержащего водяные пары, возрастает, и при числе М 1,2 происходит конденсация пара, сопровождающаяся образованием ударных волн — скачков конденсации, существенно нарушающих равномерность поля скоростей и давлений в рабочей части А. т. Для предотвращения скачков конденсации влага из воздуха, циркулирующего в А. т., удаляется в специальных осушителях 11.

         Одним из основных преимуществ сверхзвуковых А. т., осуществляемых по схеме рис. 3, является возможность проведения опытов значительной продолжительности. Однако для многих задач аэродинамики это преимущество не является решающим. К недостаткам таких А. т. относятся: необходимость иметь энергетические установки большой мощности, а также трудности, возникающие при числах М > 4 вследствие быстрого роста требуемой степени сжатия компрессора. Поэтому широкое распространение получили т. н. баллонные А. т., в которых для создания перепада давлений перед соплом помещают баллоны высокого давления, содержащие газ при давлении 100 Мн/м2(1000 кгс/см2), а за диффузором — вакуумные ёмкости (газгольдеры), откачанные до абсолютного давления 100—0,1 н/м2(10-3—10-6кгс/см2), или систему эжекторов (рис. 4).

         Одной из основных особенностей А. т. больших чисел М (М > 5) является необходимость подогрева воздуха во избежание его конденсации в результате понижения температуры с ростом числа М. В отличие от водяных паров, воздух конденсируется без заметного переохлаждения. Конденсация воздуха существенно изменяет параметры струи, вытекающей из сопла, и делает её практически непригодной для аэродинамического эксперимента. Поэтому А. т. больших чисел М имеют подогреватели воздуха. Температура T0, до которой необходимо подогреть воздух, тем больше, чем больше число М в рабочей части А. т. и давление перед соплом p0. Например, для предотвращения конденсации воздуха в А. т. при числах М ≈ 10 и p05 Мн/м2(50 кгс/см2) необходимо подогревать воздух до абсолютной температуры T0 ≈ 1000 К.

         Развитие техники идёт в направлении дальнейшего увеличения скоростей полёта. Спускаемые космические аппараты «Восток» и «Восход» входят в атмосферу Земли с первой космической скоростью v1кос ≈ 8 км/сек (т. е. М > 20). Космические корабли, возвращающиеся на Землю с Луны и др. планет, будут входить в атмосферу со второй космической скоростью v2кос ≥ 11 км/сек (М > 30). При таких скоростях полёта температура газа за ударной волной, возникающей перед летящим телом, превыщает 10000 К, молекулы азота и кислорода диссоциируют (распадаются на атомы), и становится существенной Ионизация атомов. Необходимо исследовать влияние этих процессов на силы, возникающие при обтекании тела, и тепловые потоки, поступающие к его поверхности. Для этого в А. т. необходимо получить не только натурные значения чисел М и Re, но и соответствующие температуры T0. Это привело к созданию новых типов А. т., работающих с газом, нагретым до высоких температур, значительно превышающих температуру, необходимую для предотвращения конденсации воздуха при данном числе М. К установкам этой группы относятся ударные трубы, импульсные установки, электродуговые установки и т. п.

         Ударная труба (рис. 5, а) представляет собой ступенчатую цилиндрическую трубу, состоящую из двух секций — высокого 1 и низкого 2 давления, разделённых мембраной 3. В секции 1 содержится «толкающий» газ (обычно Не или Н), нагретый до высокой температуры и сжатый до давления p1. Секция низкого давления заполняется рабочим газом (воздухом) при низком давлении p2 Это состояние, предшествующее запуску А. т., соответствует на рис. 5, б времени t0. После разрыва мембраны 3 по рабочему газу начинает перемещаться ударная волна 4, которая сжимает его до давления р и повышает температуру. За ударной волной с меньшей скоростью двигается контактная поверхность 5, разделяющая толкающий и рабочий газы (момент времени t1). Давление и температура рабочего газа в объёме между ударной волной и контактной поверхностью постоянны. В дальнейшем ударная волна 4 пройдёт через сопло 6 и рабочую часть А. т. 7 в ёмкость 8, и в рабочей части установится сверхзвуковое течение с давлением p4 (момент времени t2).

         Исследование обтекания газом модели 9 начинается в тот момент, когда ударная волна 4 пройдёт сечение, в котором расположена модель, и заканчивается, когда в это сечение придёт контактная поверхность. Поскольку скорость движения ударной волны в трубе 2 больше скорости контактной поверхности, очевидно, что длительность эксперимента в А. т. тем больше, чем больше длина «разгонной» трубы 2. В существующих ударных А. т. эта длина достигает 200—300 м.

         Рассмотренный тип ударных А. т. даёт возможность получить температуры около 8000 К при времени работы порядка миллисекунд. Применяя ударные А. т. с несколькими мембранами, удаётся получить температуры до 18000 К.

         Электродуговые А. т. Для решения многих задач аэродинамики можно ограничиться меньшими температурами, но требуется значительное время эксперимента, например при исследовании аэродинамического нагрева (См. Аэродинамический нагрев) или теплозащитных покрытий.

         В электродуговых А. т. (рис. 6) воздух, подаваемый в форкамеру сопла, подогревается в электрической дуге до температуры Аэродинамическая труба6000 К. Дуга, образующаяся в кольцевом канале между охлаждаемыми поверхностями центрального электрода 1 и камеры 2, вращается с большой частотой магнитным полем, создаваемым индуктивной катушкой 7 (вращение дугового разряда необходимо для уменьшения эрозии электродов). А. т. этого типа позволяет получить числа М до 20 при длительности эксперимента в несколько сек. Однако давление в форкамере обычно не превышает 10 Мн/м2 (100 кгс/см2).

         Большие давления в форкамере Аэродинамическая труба60 Мн/м2 (600 кгс/см2) и, соответственно, большие значения числа М можно получить в т. н. импульсных А. т., в которых для нагревания газа применяется искровой разряд батареи высоковольтных конденсаторов. температура в форкамере импульсной А. т. Аэродинамическая труба 6000 К, время работы — несколько десятков мсек.

         Недостатки установок этого типа — загрязнение потока продуктами эрозии электродов и сопла и изменение давления и температуры газа в процессе эксперимента.

         Лит.: Пэнкхёрст Р. и Холдер Д., Техника эксперимента в аэродинамических трубах, пер. с англ., М., 1955; Закс Н. А., Основы экспериментальной аэродинамики, 2 изд., М., 1953; Хилтон У. Ф., Аэродинамика больших скоростей, пер. с англ., М., 1955; Современная техника аэродинамических исследований при гиперзвуковых скоростях, под ред. А. М. Крилла, пер. с англ., М., 1965; Исследование гиперзвуковых течений, под ред. Ф. Р. Риддела, пер. с англ., М., 1965.

         М. Я. Юделович.

        

        Рис. 1. Дозвуковая аэродинамическая труба.

        

        Рис. 2. Схемы рабочей части аэродинамической трубы (а — закрытая, б — открытая, в — открытая рабочая часть с камерой Эйфеля): 1 — модель; 2 — сопло; 3 — диффузор; 4 — струя газа, выходящего из сопла; 5 — камера Эйфеля; 6 — рабочая часть.

        

        Рис. 3. Сверхзвуковая аэродинамическая труба: 1 — рабочая часть; 2 — модель; 3 — аэродинамические весы; 4 — сопло; 5 — диффузор; 6 — спрямляющие решётки; 7 — компрессор с двигателем ; 9 — обратный канал; 10 — теплообменник; 11 — осушитель воздуха.

        

        Рис. 4. Две баллонные аэродинамические трубы с повышенным давлением на входе в сопло и с пониженным давлением на выходе из диффузора, создаваемым: а — двухступенчатым эжектором и б — вакуумным газгольдером; 1 — компрессор высокого давления; 2 — осушитель воздуха; 3 — баллоны высокого давления; 4 — дроссельный кран; 5 — ресивер сопла; 6 — сопло; 7 — модель; 8 — диффузор аэродинамической трубы; 9 — эжекторы; 10 — дроссельные краны; 11 — диффузор эжектора; 12 — быстродействующий кран; 13 — вакуумный газгольдер; 14 — вакуумный насос; 15 — подогреватель воздуха; 16 — радиатор.

        

        Рис. 5. а — ударная аэродинамическая труба; б — график изменения давления в ударной трубе.

        

        Рис. 6. Электродуговая аэродинамическая труба: 1 — центральный (грибообразный) электрод, охлаждаемый водой; 2 — стенки камеры, переходящие в сверхзвуковое сопло, охлаждаемые водой; 3 — рабочая часть с высотной камерой; 4 — модель; 5 — диффузор; 6 — дуговой разряд; 7 — индукционная катушка, вращающая дуговой разряд; I — контакты для подведения электрического тока дугового разряда; II — контакты для подведения электрического тока к индукционной катушке.

dic.academic.ru

Аэродинамическая труба — это… Что такое Аэродинамическая труба?

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это экспериментальная установка, разработанная для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет, мостов, зданий и др.) потоком, а также для экспериментального изучения аэродинамических явлений.

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Фрэнсис Герберт Уэнхем (Francis Herbert Wenham), член Совета Королевского авиационного общества Великобритании, создал первую закрытую аэродинамическую трубу в 1871 году.

Первую аэродинамическую трубу в России построил военный инженер В. А. Пашкевич в 1873 году, она использовалась исключительно для опытов в области баллистики.

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет воздушным потоком).

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

Литература

  • Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. — Л.: Судостроение, 1988.
  • Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3-х т. — Л.: Судостроение, 1987. — Т.1
  • Физическая энциклопедия / Редкол.: А. М. Прохоров (гл. ред.) и др. — М.: Советская энциклопедия, 1988, — Т.1 — С. 161—164 — 704 с., ил. — 100 000 экз.

Ссылки

dic.academic.ru

Аэродинамическая труба: влияние на тело человека

Аэродинамической трубой называется установка, в которой проводятся эксперименты и изучаются явления по обтеканию тел потоком воздуха или газа. Сделать аэродинамическую трубу в домашних условиях своими руками – вполне реально.

Как сделать такую трубу в домашних условиях

На оси нужно укрепить коромысло таким образом, чтобы одно плечо получилось коротким, а другое длинным. Вращению оси на кронштейне ничего не должно мешать, ни трение, ни что-либо другое. Кронштейн нужно приварить или привинтить к щиту с размеченной шкалой, проградуированной в граммах.

На коромысле нужно жестко закрепить вертикальный стержень, на его нижний конец так же жестко прикрепляются различные предметы. Короткое плечо коромысла уравновешивается более тяжелым грузом, которое предназначается для того, чтобы установить коромысло в нулевое положение. Длинное плечо уравновешивается грузиком поменьше, который свободно передвигается по этой части коромысла. Чтобы создать воздушный поток, можно включить пылесос или вентилятор.

Для направления потока используется труба, размер диаметра которой должен немного превышать размер диаметра тела, испытуемого в данном эксперименте. Теперь нужно подвесить предмет, установить маленький грузик на отметке в ноль и начать передвигать большой грузик по короткому плечу, стремясь, чтобы стрелка достигла отметки напротив черты. Чтобы упростить процесс регулирования коромысла, не возбраняется большой грузик выполнить на резьбе.

После уравновешивания системы можно начинать подавать воздух. При этом коромысло начнет отклоняться вверх, и нужно с помощью маленького грузика вернуть его обратно к черте. Деление напротив грузика будет показывать величину, с которой сопротивляется данное тело. Естественно, у каждого предмета будет своя величина сопротивления.

Для чистоты эксперимента необходимо придерживаться следующих условий: поток воздуха должен воздействовать на предмет с постоянной силой. Расстояние между концом трубы и местом, где тело имеет наибольшее сечение так же должно быть неизменным. Ось тела и ось трубы так же должны совпадать.

Выбирая материал для коромысла, лучше отдать предпочтение дюралюминию, что касается материала остальных деталей, то это не имеет существенного значения.

Эффект в промышленности и строительстве

Эффект, который создает аэродинамическая труба, играет большую роль в самолетостроении, ракетостроении и других областях человеческой деятельности. Она помогает определить силы при движении подводных судов. Благодаря ей становится возможным отыскать оптимальную, устойчивую и управляемую форму ракет, самолетов, космических кораблей, поездов и автомобилей. Специальные трубы используются для исследования нагревания и теплозащиты ракет, самолетов и т.д.

Все опыты с аэродинамической трубой имеют в основе принцип обратимости движения, в котором передвижение тела относительно воздушной или водной среды можно заменить движением потока воздуха, набегающего на неподвижный предмет. Как уже было сказано выше, для этого эксперимента необходимо создать постоянный поток, а так же неизменную температуру и плотность. Главное – это соблюсти условия, при которых будет возможно перенести результаты, полученные для модели в лаборатории на натуральный объект.

Если условия выполнены верно, коэффициенты аэродинамики экспериментальной модели и полноразмерного объекта будут равны между собой, а это позволит произвести расчет силы, которая будет действовать на натуральный объект (например, космический корабль).

История имитатора свободного падения

Впервые аэродинамическая труба была создана К. Э. Циолковским в 1897 году. Конечно, это был всего лишь ее прототип, в котором поток воздуха создавался центробежным вентилятором. Первая труба, имеющая разомкнутую схему, была создана англичанином Т. Стантоном в 1903 году и нашим соотечественником Н.Е. Жуковским в 1906 году.

А уже в 1909 году появилась труба разомкнутой схемы, а так же модель, имеющая свободную струю в рабочей части. В дальнейшем, с развитием таких отраслей, как артиллерия, реактивная авиация и ракетная техника, появилась сверхзвуковая аэродинамическая труба. Скорость потока воздушной массы в ее рабочей части в несколько раз превысила скорость, с которой распространяется звуковая волна.

Классификация

  1. В первую очередь их классифицируют в соответствии с диапазоном скоростей потока. Т.е. А. т. может быть дозвуковой, сверхзвуковой, трансзвуковой и гиперзвуковой.
  2. Вторая классификация учитывает тип и размер рабочей части. Т.е. А. т. может быть открытой и закрытой.
  3. Третья классификация учитывает такую характеристику, как поджатие. Ее рассчитывают путем соотношения таких величин, как площадь поперечного сечения сопла трубы и форкамеры.

Помимо этой классификации выделяют три группы А.:

  1. Высокотемпературная. Она изучает влияние высоких температур и явлений, с ним связанных. Это диссоциация и ионизация газов.
  2. Высотная. Она исследует обтекание моделей разреженным газом, т.е. имитируется полет на большой высоте.
  3. Аэроакустическая. Она исследует влияние акустических полей на устойчивость конструкции, работу различных механизмов и др.

Для исследования характеристик частей корпуса судов используются дублированные модели, это позволяет исключить протекание на поверхности разделения сред. В качестве альтернативного варианта может быть использован специальный экран, имитирующий поверхность воды.

Как еще используется аэродинамическая установка

На сегодняшний день существует такой тренажер, который называется «Вертикальная аэродинамическая труба». Ее используют для подготовки начинающих парашютистов и в качестве безопасного и удобного аттракциона для любителей экстремальных видов спорта. Что касается технической подготовки, то данный процесс призван сознательно изменить поведение спортсмена, чтобы его действия соответствовали задачам его деятельности.

Доказано, что спортсмены (и не только парашютисты) благодаря применению тренажеров повышают эффективность тренировочного процесса в несколько раз.

Тренажером, в котором наиболее точно удалось сымитировать условия свободного падения, является спортивное сооружения для подготовки парашютистов – вертикальная аэродинамическая труба. В нашей стране существует несколько таких сооружения замкнутого типа, которые пригодны для тренировок
парашютистов самых разных уровней подготовки.

В чем преимущества использования аэродинамической установки

  1. Такая установка позволяет заниматься независимо от того, какие погодные условия установились на данный момент. Осуществлять полет в трубе можно в течение всего года.
  2. Установка исключает возникновение стресс-факторов, таких как высота, страх, недостаток времени. Человек может полностью сосредоточиться на том, чтобы правильно выполнять необходимые движения, не думая о своей безопасности.
  3. Тренировочный процесс идет четко по плану, теоретические и практические занятия осуществляются в одном месте.
  4. Тренировки не разорваны по времени.
  5. Полетное время заполнено самым эффективным образом.
  6. Инструктор и ученик могут видеть друг друга, общаться друг с другом. Это дает возможность тут же исправить возможные ошибки и добиться правильного исполнения движений.

Недостатки использования

  1. Чаще всего новички в парашютном спорте, занимаясь в аэродинамической трубе, не могут зафиксировать, сфокусировать взгляд. Их бегающие плавающие глаза не могут сконцентрироваться на зданиях и на необходимых действиях.
  2. Занимающийся очень часто бывает излишне напряжен, скован, а это вызывает потерю позы. Нередко он пытается оторваться от сетки и взлететь, спеша и форсируя события.
  3. Может совершать ненужные резкие движения, помогая себе руками и ногами, а так же не выдерживать заданную высоту.

phoenix-master.com

Аэродинамическая труба АТ-11 СПбГУ: модернизация конструктивных узлов аэродинамического тракта

 

В статье речь идёт об оригинальных конструктивных решениях по узлам аэродинамического тракта промышленной дозвуковой аэродинамической трубы замкнутого типа с открытой рабочей частью. Решения выполнены на основе тщательного экспериментального исследования влияния вносимых конструктивных решений на параметры потока в открытой рабочей части. В статье также коротко отражены координатно-позиционирующие устройства, позволяющие расширить варианты исполнения открытой рабочей части аэродинамической трубы.

Ключевые слова: дозвуковая аэродинамическая труба, открытая рабочая часть, диффузор, конфузор (сопло), поворотные секции, хонейкомб, поворотные лопатки.

 

История развития и становления аэродинамических труб на математико-механическом факультете СПбГУ изложена по работе [1]. Первая дозвуковая аэродинамическая труба АТ-12 была сдана в эксплуатацию к 7 ноября 1933 г. В дальнейшем развитие экспериментальной базы и создание в Петродворце аэродинамического комплекса во второй половине прошлого века связано с именем С. В. Валландера. В этот комплекс в 1976 г состоялся переезд аэродинамической трубы АТ-12, и в модернизированном виде в 1978 г АТ-12 была сдана в эксплуатацию.

После завершения строительства всего корпуса аэродинамики была смонтирована еще одна аэродинамическая труба — труба АТ-11. Первый пуск трубы АТ-11 состоялся в июне 1989 г. Аэродинамическая труба АТ-11 была “заморожена” в строительстве с 1989 г. по 2009 г. В 2009 г. руководством математико-механического факультета было принято принципиальное решение: всеми возможными способами достроить и модернизировать аэродинамическую трубу АТ-11, сдать трубу в эксплуатацию и интегрировать с трубой современные измерительные технологии. Данное решение было воплощено в жизнь.

Эскизный и рабочий проекты аэродинамической трубы АТ-11 выполнены коллективом сотрудников лаборатории аэродинамики под руководством зав. лабораторией Р. Н. Мирошина [3]. После всестороннего анализа построенных на то время (60-е — 80-е годы прошлого века) экспериментальных установок и опубликованных работ, с учетом требования достижения критического числа Рейнольдса, авторами [3] были выбраны следующие конструктивные параметры аэродинамической трубы АТ-11:

                    размер выходного сечения коллектора (сопла) — круг диаметром 2,25 м;

                    длина рабочей части — 4 м;

                    максимальная скорость потока — 70 м/с.

Следует отметить, что существовало ограничение на габариты установки, главным образом на ее длину, определяемое размерами зала для размещения аэродинамической трубы АТ-11, которое наложило свой отпечаток на эскизный проект аэродинамической трубы АТ-11 и, в дальнейшем, на реализованную конструкцию аэродинамической трубы.

В соответствии с требованиями к установке была выбрана общая её компоновка: аэродинамическая труба замкнутого типа с одним обратным каналом и открытой рабочей частью. Установки подобного конструктивного типа наиболее рациональны как с точки зрения удобства проведения эксперимента, так и с точки зрения качества потока и экономичности трубы.

Аэродинамический контур АТ-11, см. рис.1, показан в горизонтальной плоскости трубы и состоит из следующих основных элементов: рабочей части, диффузора, переходной части, одноступенчатого осевого вентилятора, поворотных секций, поворотных лопаток в поворотных секциях, обратного канала, участка быстрого расширения потока, форкамеры с хонейкомбом, коллектора (сопла).

Силовой каркас аэродинамической трубы АТ-11 представляет собой конструкцию из шпангоутов и стрингеров и выполнен из деревянных деталей. Внутренняя и внешняя поверхности трубы выполнены из 5-милиметровой фанеры. Заполнение между двумя слоями фанеры отсутствует.

Рис. 1. Аэродинамический контур трубы АТ-11

 

Рабочая часть

Рабочая часть аэродинамической трубы АТ-11 — открытая, длиной Lрч = 4000 мм от выходного сечения сопла (диаметр сопла Dс = 2250 мм) до входного сечения диффузора. Поток в рабочей части представляет собой участок свободной турбулентной струи

В процессе модернизации трубы АТ-11 разработаны и изготовлены поворотные круги под рабочей частью и в весовой, 2 сменных координатно-позиционирующих устройства с устанавливаемыми на них аэродинамическими моделями, технологическим и измерительным оборудованием.

X-Y координатно-позиционирующее устройство (КПУ № 1).

На X-Y координатно-позиционирующее устройство можно устанавливать различные измерительные зонды и лёгкие аэродинамические модели. Фотография КПУ № 1, на фоне диффузора, приведена на рис. 2. КПУ № 1 представляет собой конструкцию перемещаемой по рельсам тележки с закреплёнными на ней двумя взаимно перпендикулярными каретками форматно-раскроечного станка Z-3200, перемещаемыми приводами кареток по на 1,5 метра по каждой координате. На поперечной каретке видна установленная на ней вертикально гребенка с измерительными зондами (трубками Пито-Прандтля). Управляется КПУ № 1 оригинальной системой программно-позиционного управления.

Рис. 2. X-Y координатно-позиционирующее устройство

 

Координатно-позиционирующее устройство № 2 (КПУ № 2).

КПУ № 2 схематично показано на рис. 3.

На рис. 3 обозначены: поз.1 — сопло, поз. 2 — диффузор, поз. 3 — кольцевой раструб, поз. 4 — КПУ № 2. КПУ № 2 по направляющим рельсам вкатывается из весовой в открытую рабочую часть и устанавливается на нижний поворотный круг 5. На КПУ № 2 размещен стол-экран 6, положение которого по высоте и в горизонте регулируется с помощью натяжных тросов. Стол-экран 6 установлен на поперечной (ось Y) оси с возможностью качения относительно горизонтальной плоскости. Внутри стола-экрана выполнен поворотный круг 7 с возможностью поворота в плоскости стола-экрана на 360°. Регулировочными механизмами обеспечивается, при установке КПУ № 2 на поворотном круге 5, перпендикулярность оси Y стола-экрана оси X потока и положение оси Y в горизонте.

Рис. 3. Схема КПУ № 2

 

На КПУ № 2 размещен 3D координатник 8, на котором могут быть установлены различные измерительные зонды. В частности, на рис. 3 обозначены поз. 9 — двойной импульсный лазер и поз. 10 — две кросскорреляционные камеры, входящие в состав PIV-системы. 3D координатник позволяет сканировать измерительными зондами или измерительной вертикальной плоскостью PIV-системы поток в открытой рабочей части в объёме 1000х1000х1000 мм. Для управления 3D координатником разработано специализированное программное обеспечение.

Диффузор с кольцевым раструбом

За открытой рабочей частью находится диффузор. Диффузор аэродинамической трубы АТ-11 от входного сечения на расстоянии Lдц = 500мм — цилиндрический, а далее — расширяющийся канал круглого поперечного сечения длиной 6300 мм. Входное сечение диффузора — круг диаметром Dд = 2450 мм. Выходное сечение диффузора — круг диаметром 3000 мм. Угол раскрытия диффузора — 5°. Перед диффузором аэродинамической трубы АТ-11 установлен кольцевой раструб, охватывающий диффузор снаружи и имеющий по внутренней поверхности в поперечном сечении форму кольцевого крыла. Кольцевой раструб установлен на тележке, которая может перемещаться в осевом направлении.

При модернизации аэродинамической трубы АТ-11в конце диффузора, перед цилиндрической частью вентилятора, был установлен обтекатель. Схема расположения обтекателя относительно вентилятора и основные размеры такой компоновки показаны на рис. 4.

Рис. 4. Схема расположения обтекателя

 

Цилиндрическое тело вентилятора 1 имеет по переднему торцу выемку глубиной 130 мм. Цилиндрическая образующая выемки — тонкая, толщиной 5 мм. Расстояние между вентилятором и обтекателем 2–500 мм, что позволяет проводить технические работы по монтажу и обслуживанию вентилятора и обтекателя. Обтекатель выполнен коническим с оживальной формой в начале его. Длина обтекателя — 2000мм; диаметр у основания — 1200 мм. Несущие пластины 3 (6 шт) обтекателя выполнены из фанеры толщиной 16 мм и шириной 750 мм. Проходное сечение в конце диффузора в связи с размещением обтекателя уменьшилось на 5,5 %, но сохранилось значительно большим проходного сечения на входе в диффузор.

Виды со стороны рабочей части на вентилятор без обтекателя и с установленным обтекателем показаны на рис.5.

Рис. 5. Виды на вентилятор

 

На переднем плане рис. 5 видны элементы защитной прямоугольной сетки, и, далее, — обтекатель с 6-ю несущими пластинами, исходящими из тела обтекателя в направлении к внутренней поверхности диффузора и закрепленными на 3-х элементах швеллера № 16. За оголовком и несущими пластинами видны лопасти вентилятора. Воздушный поток засасывается в диффузор десяти лопастным вентилятором, расположенным в переходном участке трубы. Сами лопасти находятся в начале переходного участка.

Десяти лопастной осевой вентилятор, установленный с консольным вылетом на двух подшипниковых опорах, соединен промежуточным валом с электродвигателем постоянного тока и развивает напор, достаточный для преодоления сопротивления всего контура аэродинамической трубы. Регулирование скорости потока в рабочей части трубы обеспечивается регулированием скорости вращения вала электродвигателя с помощью привода постоянного тока.

По проекту [3] предполагалось выполнить в стенках диффузора демпфирующие сквозные отверстия на расстоянии (0.53- 0.86)Dд от входного сечения диффузора диаметром Dд; форма, размеры и число отверстий, как указано в [3], определяются из конструктивных соображений; общая площадь отверстий должна была составить величину ~2м2 (0.42 % от площади входного сечения диффузора).

Демпфирующие сквозные отверстия были выполнены при модернизации трубы на основе экспериментальных результатов по исследованию инфразвуковых пульсаций давления в рабочем канале аэродинамической трубы. Эскиз с расположением демпфирующих отверстий представлен на рис. 6.

Рис. 6. Диффузор с демпфирующими отверстиями. 1 — диффузор; 2 — кольцевой раструб; 3 — лопасти вентилятора

 

Переходный участок

К диффузору примыкает переходный участок длиной 2500 мм. На длине этого участка осуществляется плавный конструктивный переход от круглого поперечного сечения диффузора к восьмиугольному поперечному сечению контура аэродинамической трубы. Начало переходного участка представляет собой цилиндр постоянного поперечного сечения диаметром 3000 мм и длиной 300 мм.

В переходном участке расположен ведомый вал вентилятора, установленный на двух подшипниковых опорах. Опоры установлены на горизонтальных площадках, размещенных каждая на трёх силовых пластинах толщиной 40 мм и шириной 400 мм. Опоры и силовые пластины связаны между собой полуцилиндрическим трубным сегментом. Опоры, трубный сегмент, три силовые пластины удалённой от лопастей вентилятора опоры скрыты цилиндрическим телом вентилятора, см. рис.5; видны лишь три силовые пластины ближайшей к вентилятору опоры.

При экспериментальных исследованиях потока в открытой рабочей части аэродинамической трубы было выявлено существование значительного по амплитуде и площади вихревого течения, выходящего из сопла и, предположительно, индуцированного лопастями вентилятора. Ослаблению влияния вихревого течения до приемлемых параметров потока в открытой рабочей части способствовало конструктивное решение по установке в переходном участке за лопастями вентилятора спрямляющих поток пластин и короба, накрывающего полуцилиндрический трубный сегмент. Фотография элементов конструкции за лопастями вентилятора приведена на рис. 7.

Рис. 7. Вид на спрямляющие пластины и короб за лопастями вентилятора

 

Поворотные секции

За переходным участком расположены 1 и 2 поворотные секции, обратный канал (конструктивное исполнение внутреннего канала аэродинамической трубы от переходного участка до сопла — восьмиугольное поперечное сечение), 3 и 4 поворотные секции.

Для уменьшения потерь на сопротивление и улучшения поля скоростей потока в поворотных секциях установлены направляющие лопатки, профилированные в соответствии с рекомендациями работ [2,4]. Выполненный нами расчёт в соответствии с указанными рекомендациями дан в таблице 1, где:

                     — площадь проходного сечения секции в м2;

                     — условный диаметр проходного сечения секции в м;

                     — размер хорды поворотной лопатки в м;

                     — приведённый размер хорды;

                     — количество лопаток фактическое, оптимальное или нормальное.

 

Таблица 1

Данные по лопаткам секций

секции

, м2

, м

, м

лоп. факт.

лоп. расчетн.

примечание

№ 1

7.45

3.08

0.755

0.252

8

8 опт.

приемлемая

№ 2

7.45

3.08

0.755

0.252

8

8 опт.

приемлемая

№ 3

17.5

4.72

0.755

0.164

12

12 опт.

короткая

№ 4

17.5

4.72

0.630

0.133

22

21 норм.

короткая , лоп. увел.

 

Расчёт показал, что в 3 и 4 секциях неоправданно установлены поворотные лопатки с короткими хордами. Такие лопатки приводят к геометрической прозрачности канала, не обеспечивают поворот потока, что может иметь следствием плохое качество потока на входе в форкамеру.

При модернизации поворотных секций выполнено:

                    удлинение хорд лопаток во 2 и 4 поворотных секциях в направлении движения потока вставками из бакелитовой фанеры толщиной 7 мм, шириной 450 мм и высотой, равной высоте этих лопаток;

                    соединение вставок между собой и с корпусом аэродинамической трубы в жёсткую конструкцию по горизонтальным линиям элементами из той же бакелитовой фанеры и профиля для гипсокартона.

На рис. 8 и рис. 9 показаны схема удлинения лопаток 2 секции и фотография с монтажом вставок 4 секции, соответственно.

Рис.8. Схема удлинения поворотных лопаток

 

Рис. 9. Монтаж вставок 4-ой секции (вид из форкамеры)

 

В результате: на выходе поворотных секций построены жёсткие ячеистые конструкции; размер ячеек по вертикали ~450 мм, размер по горизонтали — шаг установки поворотных лопаток; удлинение хорды поворотной лопатки 4-ой секции до ~1080 мм (приведенный размер хорды составил величину ).

Форкамера аэродинамической трубы

При модернизации форкамеры выполнены площадка в форкамере и фундамент с наружной нижней стороны форкамеры для установки облегченного хонейкомба, отличающегося конструктивно от классического.

Хонейкомб смонтирован из секций профилированного решётчатого настила размером 1000х1000х30 мм. Размер ячейки в секции 30х30 мм. Хонейкомб представляет собой двухслойную вертикальную конструкцию шириной 360 мм, заполняющую внутренний канал форкамеры.

На рис. 10 приведена фотография, иллюстрирующая размеры и процесс монтажа хонейкомба.

Традиционно считается [4], что наличие хонейкомба и детурбулизирующих сеток обеспечивают качество потока в рабочей части аэродинамической трубы. Вместе с тем, в ряде крупногабаритных аэродинамических труб ЦАГИ (трубы Т-102, Т-103 и Т-104) детурбулизирующие сетки отсутствуют, а в трубе Т-104 отсутствует и хонейкомб [5].

В аэродинамической трубе АТ-11 в процессе модернизации было принято решение отказаться от установки детурбулизирующих сеток по всему аэродинамическому тракту АТ-11 и только на входе в диффузор установить защитную сетку.

Рис. 10. Хонейкомб в процессе монтажа

 

Модернизированная аэродинамическая труба АТ-11 обеспечивает в открытой рабочей части:

                    скорость потока до 70 м/с;

                    степень турбулентности потока менее 1 %;

                    неравномерность скорости потока в поперечном направлении на длине 1,5 м менее 1,5 %;

В аэродинамической трубе практически полностью демпфированы пульсации давления инфразвукового диапазона.

 

Литература:

 

  1.                Богатко В. И., Мирошин Р. Н., Цибаров В. А. О развитии аэродинамики в Ленинградском-Санкт-Петербургском университете // В сб.: Аэродинамика (к 60-летию лаборатории аэродинамики С.-Петербургского университета) / Под ред. Р. Н. Мирошина. CПб.: Изд-во С.-Петербургского ун-та, 1997. С. 5–29.
  2.                Идельчик И. Е. Справочник по гидравлическим сопротивлениям. М. -Машиностроение, 1992. 672 с.
  3.                Мирошин Р. Н., Крылов В. Д. Проектирование, отладка и пуск аэродинамических труб АТ-11 и АТ-13. Модернизация трубы АТ-12 (промежуточный отчет № 2 — эскизный проект аэродинамической трубы АТ-11). Отчет НИММ ЛГУ, 1980. 40 с.
  4.                Повх И. Л. Аэродинамический эксперимент в машиностроении. Изд. 3-е, доп. исправл., Изд-во Машиностроение (Ленингр. отд-ние). 1974. 480 с.
  5.                Экспериментальная база ЦАГИ [Электронный ресурс]. URL: http://www.tsagi.ru/experimental_base/ (дата обращения 05.11.2015)

moluch.ru

Аэродинамическая труба — это… Что такое Аэродинамическая труба?

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это экспериментальная установка, разработанная для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет, мостов, зданий и др.) потоком, а также для экспериментального изучения аэродинамических явлений.

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Фрэнсис Герберт Уэнхем (Francis Herbert Wenham), член Совета Королевского авиационного общества Великобритании, создал первую закрытую аэродинамическую трубу в 1871 году.

Первую аэродинамическую трубу в России построил военный инженер В. А. Пашкевич в 1873 году, она использовалась исключительно для опытов в области баллистики.

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет воздушным потоком).

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

Литература

  • Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. — Л.: Судостроение, 1988.
  • Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3-х т. — Л.: Судостроение, 1987. — Т.1
  • Физическая энциклопедия / Редкол.: А. М. Прохоров (гл. ред.) и др. — М.: Советская энциклопедия, 1988, — Т.1 — С. 161—164 — 704 с., ил. — 100 000 экз.

Ссылки

dal.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован.