Из чего делают резина – : ,

Содержание

Из чего делают автомобильную резину

Условия суровой конкуренции заставляют многих производителей автомобильных покрышек утаивать состав резиновой смеси, используемый для производства автошин. Этапы технологического процесса держатся в строгой секретности. При этом основные составляющие, из которых изготавливается авторезина, известны. Без них невозможно создание покрышек. Давайте разберемся, из чего делают резину.

Натуральные и синтетические составляющие

Как добывается натуральный каучук

Резину для автомобилей делают из каучука, который может быть природного либо синтетического происхождения. Натуральный каучук добывают из каучуковых деревьев. Дословно название «каучук» переводится как плачущее дерево. Сок указанного дерева имеет очень большую ценность, из него производится авторезина. Синтетический каучук имеет меньшую себестоимость, его чаще применяют для производства.

Примерно 30% от общего состава резины составляет технический углерод (сажа). Он выступает скрепляющим компонентом, действующим на молекулярном уровне. Сажа увеличивает такие характеристики резины:

  • эксплуатационный период;
  • прочность изделия;
  • износостойкость.

Иногда технический углерод заменяется кремниевой кислотой. Этот компонент используют с целью уменьшения себестоимости продукции. Указанная кислота дешевле сажи. При ее использовании увеличивается сцепление колес с мокрым дорожным покрытием, при этом уменьшается стойкость шин к износу.

При производстве резины, для обеспечения ей определенных свойств домешивают разнообразные масла и смолы. Они уменьшают жесткость покрышек, предназначенных для зимы.

Каждый производитель покрышек применяет особый состав авторезины, делает упор на определенные характеристики покрышек:

  • сцепление с дорожной поверхностью;
  • устойчивость к абразивным частицам дороги;
  • улучшение скоростных характеристик и так далее.

Рекомендуем посмотреть видео о том, из чего делают резину:

Технология производства авторезины

Производство автопокрышек

Летняя резина отличается от зимней авторезины количеством и качеством, входящего в ее состав каучука. Чтоб сделать летние автошины, необходим каучук ненатурального происхождения. Он обеспечивает жесткость автопокрышкам. Натуральное сырье наоборот смягчает резину, поэтому его используют в зимних шинах. Присутствие натурального каучука позволяет зимним покрышкам не «дубеть» при очень низких температурах.


Сок каучуковых деревьев собирают, затем помещают его в большие чаны, наполненные кислотой на 10 и более часов. Такая технология позволяет сырью затвердеть и в результате получается латекс. Из полученного латекса убирают излишнюю влагу и пропускают его через специальные валы, для образования широкой ленты. Указанная лента с помощью специальных ножей измельчается, в итоге получается легкая воздушная масса, которую с помощью обжига в специальных печах преобразуют в эластичные блоки.

Указанные блоки помещают в специальный котел, в который производителем добавляются дополнительные элементы с учетом четких пропорций для придания резине определенных качественных характеристик. Этот «коктейль», состоящий из каучука и химических элементов нагревается и превращается в резину. Разогретую смесь раскатывают специальными валами в полосы определенной толщины, затем охлаждают.

Процесс изготовления автопокрышек

Из чего делаются покрышки? Готовые автопокрышки состоят не только из резины. Каркас автопокрышек изготавливают из специальных нитей. Они могут быть:

  • текстильными;
  • металлическими;
  • полимерными.

Технология производства корда напоминает работу ткацкого станка. Образованный корд помещается в экструдер, в котором осуществляется его обрезинивание. Готовый каркас раскатывается на полосы, имеющие различную ширину для изготовления покрышек разной размерности.

Для создания протекторного слоя обрезиненный корд помещается на специальный станок, превращающий методом экструзии заготовку в протектор.

Борт авторезины изготавливается следующим образом:

  1. Металлическая проволока обрезинивается.
  2. Производится нарезка обрезиненной проволоки кругами (с учетом радиуса будущей покрышки).
  3. На специальном станке проводится сборка боковин.

Для сбора составляющих элементов шин в единую конструкцию применяют специальный станок. На него устанавливают бортовые кольца и катушки с компонентами. Станок автоматически соединяет все части автопокрышки, затем наполняет заготовку воздухом под протектор с брекетом.

Завершающим этапом создания шин есть вулканизация. После обработки покрышки горячим паром под давлением, каучук с всевозможными присадками спекается. Затем с применением специальных форм для пресса наносится протекторный рисунок с разнообразными надписями. Готовая продукция проверяется на соответствие всем необходимым характеристикам.

Заключение

Автомобильная резина состоит, в большинстве случаев, из таких компонентов:

  • каучук;
  • смолы;
  • кремниевая кислота;
  • сажа;
  • секретные химические элементы, добавляемые в резину для придания ей определенных качеств (мел, глицерин, ацетилированный ланолин и так далее).

От качественных и количественных характеристик указанных компонентов зависит качество готовой продукции. Не стоит поддаваться рекламному воздействию и отдавать предпочтение автошинам, изготовленным с применением новых химических компонентов. Перед покупкой таких покрышек, стоит поинтересоваться, насколько заявленные производителем авторезины параметры соответствуют реальности.

pro-zamenu.ru

из чего делают, сферы применения

Резина – широко известный материал, который применяется практически во всех сферах человеческой жизни. Медицина, сельское хозяйство, промышленность не могут обойтись без этого полимера. Во многих производственных процессах также используется резина. Из чего делают этот материал и в чем его особенности, описано в статье.

Что такое резина

Резина являет собой полимер с высокой эластичностью. Его структура представлена хаотично расположенными цепочками углерода, скрепленными атомами серы.

В нормальном состоянии углеродные цепочки имеют скрученный вид. Если резину растянуть, цепочки углерода раскрутятся. Способность растягиваться и быстро возвращаться в прежнюю форму сделала незаменимым во многих сферах такой материал, как резина.

Из чего делают ее? Обычно резину получают путем смешивания каучука с вулканизирующим веществом. После нагрева до нужной температуры смесь густеет.

Отличие каучука от резины

Каучук и резина – высокомолекулярные полимеры, полученные натуральным или синтетическим способом. Эти материалы отличаются физико-химическими свойствами и способами производства. Натуральный каучук являет собой вещество, изготовленное из сока тропических дерев — латекса. Он вытекает из коры при ее повреждении. Синтетический каучук получают путем полимеризации стирола, неопрена, бутадиена, изобутилена, хлоропрена, нитрила акриловой кислоты. При вулканизации искусственного каучука образуется резина.

Из чего делают разные типы каучуков? Для отдельных видов синтетических материалов применяют органические вещества, позволяющие получить материал, идентичный натуральному каучуку.

Свойства резины

Резина является универсальным материалом, который обладает следующими свойствами:

  1. Высокая эластичность – способность к большим обратным деформациям в широком диапазоне температур.
  2. Упругость и стабильность форм при малых деформациях.
  3. Аморфность – легко деформируется при незначительном нажатии.
  4. Относительная мягкость.
  5. Плохо поглощает воду.
  6. Прочность и износостойкость.
  7. В зависимости от типа каучука резина может характеризоваться водо-, масло-, бензо-, термостойкостью и стойкостью к действию химических веществ, ионизирующих и световых излучений.

Резина со временем утрачивает свои свойства и теряет форму, что проявляется разрушением и снижением прочности. Срок службы резиновых изделий зависит от условий использования и может составлять от нескольких дней до нескольких лет. Даже при длительном хранении резина стареет и становится непригодной к эксплуатации.

Производство резины

Резина изготовляется методом вулканизации каучука с добавлением смесей. Обычно 20-60% перерабатываемой массы составляет каучук. Другие компоненты резиновой смеси – наполнители, вулканизующие вещества, ускорители, пластификаторы, противостарители. В состав массы могут также добавляться красители, душистые вещества, модификаторы, антипирены и другие компоненты. Набор компонентов определяется требуемыми свойствами, условиями эксплуатации, технологией использования готового резинового изделия и экономическими расчетами. Таким способом создается высококачественная резина.

Из чего делают резиновые полуфабрикаты? Для этой цели на производствах применяется технология смешивания каучука с другими компонентами в специальных смесителях или вальцах, предназначенных для изготовления полуфабрикатов, с последующей порезкой и раскройкой. В производственном цикле используются прессы, автоклавы, барабанные и тоннельные вулканизаторы. Резиновой смеси придается высокая пластичность, благодаря которой будущее изделие приобретает необходимую форму.

Изделия из резины

На сегодняшний день резина используется в спорте, медицине, строительстве, сельском хозяйстве, на производстве. Общее количество изделий, изготовляемых из резины, превышает более 60 тыс. разновидностей. Наиболее популярные из них — уплотнители, амортизаторы, трубки, сальники, герметики, прорезиненые покрытия, облицовочные материалы.

Изделия из резины массово используются в производственных процессах. Этот материал также незаменим в производстве перчаток, обуви, ремней, непромокаемой ткани, транспортных лент.

Большая часть производимой резины используется для изготовления шин.

Резина в производстве шин

Резина является основным материалом в производстве автомобильных шин. Этот процесс начинается с приготовления резиновой смеси из натурального и синтетического каучука. Затем к резиновой массе добавляется силика, сажа и другие химические компоненты. После тщательного перемешивания смесь отправляется по конвейерной ленте в печь. На выходе получаются резиновые ленты определенной длины.

На следующем этапе происходит обрезинивание корда. Текстильный и металлический корд заливается горячей резиновой массой. В такой способ изготавливается внутренний, текстильный и брекерный слой шины.

Из чего делают резину для шин? Все производители автомобильных шин используют разные рецептуры и технологии изготовления резины. Для придания готовому изделию прочности и надежности могут добавляться разные пластификаторы и усиливающие наполнители.

Для производства шин используют натуральный каучук. Его добавление в резиновую смесь уменьшает нагревание покрышки. Большую часть резиновой смеси занимает синтетический каучук. Этот компонент придает шинам упругость и способность выдерживать большие нагрузки.

fb.ru

Из чего делают автомобильные шины. Химический состав

 ИЗ ЧЕГО ДЕЛАЮТ АВТОМОБИЛЬНЫЕ ШИНЫ. ХИМИЧЕСКИЙ СОСТАВ


Добрый день, сегодня мы узнаем, как делают автомобильные шины и из каких материалов происходит производство этих незаменимых элементов любого транспортного средства. Кроме того, расскажем, какие химические компоненты входят в состав при производстве тех или иных шин, а также почему некоторые составы покрышек держатся в строгом секрете и не разглашаются общественности. В заключении мы наглядно увидим схему производственного процесса изготовления шин для легковых автомобилей.


Как правило, автовладельцы при покупке зимних или летних шин редко задумываются над тем, как и из каких материалов производят ту или иную покрышку. Знать и понимать, какие химические компоненты входят в состав шин для автомобилей при их производстве, необходимо хотя бы для того, чтобы при покупке этих незаменимых элементов для любого транспортного средства не приобрести покрышки, которые сделаны из отходов или резины, которая не может использоваться на дорогах общего пользования. В нашем рассказе мы раскроем тему из чего же делают современные шины для автомобилей и какие компоненты используют заводы изготовители при этом не простом, как многим кажется процессе? Как мы описывали выше рецептуры приготовления для производства некоторых видов шин изготовители держат в строгом секрете, однако основные компоненты состава находятся в открытом доступе, что позволяет нам исходя из этой информации сделать обобщенное заключение о качестве и надежности готовой шины.


Итак, приступим к рассмотрению химического состава шин. И начнем с главного материала, который присутствует в каждой покрышке, которые устанавливаются на транспортное средство — это резина. Резина входящая в состав шины может быть разной и изготавливаться, как из синтетического каучука, так и натурального, природного. В последние годы многие производители начали ускоренными темпами переходить на резину изготовленную, так сказать искусственным путем, то есть из синтетического каучука. Дело в том, что такой каучук намного проще изготовить, кроме того, он прост в разработке и что самое главное в разы дешевле натурального. Что касается качества искусственного каучука, то оно ничем не уступает природному.


Следующим по важности компонентом, а также количественным показателем при производстве любой шины является технический углерод, который называется на языке производственников сажей. На долю этого компонента приходится до 30 процентов от общего химического состава любой покрышки при их производстве. Зачем же нужен углерод в шине? Углерод является скрепляющим элементом шинной смеси, который функционирует на молекулярном уровне. Без применения углерода (сажи) при производстве, готовые шины не смогли бы быть долговечными и прочными, а также ресурс таких покрышек отличался бы высоким износом.


Альтернативным компонентом техническому углероду сегодня все чаще выступает кремниевая кислота, которая применяется в качестве заменителя сажи. Причиной все более частого использования кремниевой кислоты при производстве шин является постоянно дорожающий технический углерод. Отметим, что новый заменитель сажи или углерода, вызывает много споров у автомобильных экспертов и автовладельцев, так как кремниевая кислота при низкой прочности обладает чуть более высоким параметром к сцеплению с влажной поверхностью дорожного полотна. Таким образом при потери износостойкости, владелец такой шины получает более лучшее сцепление с дорогой.

При создании компаундов в качестве специальных добавок для изготовления шин используются разные смолы и масла, как правило, синтетического происхождения. Данные компоненты играют функцию, которая обеспечивает смягчение химического состава шинной смеси. Особенно важны такие добавки при производстве зимних шин. Ниже на изображении можем видеть наглядно основной химический состав входящий в ту или иную шинную смесь при производстве покрышки



Для того, чтобы понять весь производственный процесс, который проходят готовые шины, которые мы затем покупаем в автомобильном магазине запчастей или на заправочной станции, необходимо представлять схему изготовления покрышек для транспортных средств. В такую схему входят определенные производственные этапы, начиная от изготовления резиновых смесей, производством компонентов, сборкой шин, процессом вулканизации, заканчивая складированием готовой продукции и визуального контроля каждой покрышки. Ниже на изображении можем наглядно видеть схему производственного процесса изготовления шин для легковых автомобилей.

Отметим, что если в шине имеется факт присутствия кремниевой кислоты, крахмала кукурузы или прочих компонентов, которые все чаще в последнее время рекламируются в средствах массовой информации, то заметим, что по экспертным мнениям автомобильных специалистов — это ровным счетом совершенно ничего не значит. Первоначально любому производителю очень важно изобрести, а затем соблюсти определенную рецептуру, которая с добавлением дополнительных компонентов обеспечила бы отличные технические параметры готовой автомобильной шины. К сожалению далеко не всем компаниям удается соблюсти баланс рецептуры и качества готовой покрышки.

Таким образом, почти все автомобильные шины, которые производятся на планете, изготавливаются из резины или из прочих материалов, но обязательно с добавлением каучука (природного или синтетического характера). Кроме того, любая покрышка для легкового автомобиля, которая называется радиальной шиной имеет следующие составляющие обеспечивающие ее надежность, долговечность и качество: протектор, ребра, металлокорд, нейлоновый бандаж, стальные брекеры, слой краску, заворот корда, бортовую ленту, наполнительный шнур, гермослой, подканавочный слой, бортовое кольцо, бортовую зону, боковину, канавки, наполнитель края брекера, минибоковину и прочие элементы. Более наглядно рассмотреть основные компоненты современной радиальной легковой шины мы можем ниже на изображении.  


Каждый современный производитель автомобильных шин имеет свой уникальный и в тоже время оптимальный химический состав для производства шин, который обеспечивает разнообразные характеристики готовой покрышки. Например один изготовитель делает упор на длительный срок службы шины, второй на скоростные параметры, а третий доводит рецептуру покрышки до ее идеального поведения на мокром дорожном полотне. Вышеописанные характеристики определяют конечную цену шины и самое главное ее качество.


Видео обзор: «Из чего делают автомобильные шины. Химический состав»


В заключении отметим, что при выборе шин для автомобиля необходимо знать и понимать не только их химический состав, но также уметь распознавать маркировку покрышек, которая указывает на определенные технические характеристики, для каких дорог предназначены колеса, а также при каких температурных режимах они будут оптимально функционировать. Кроме этих показателей, также необходимо учитывать шумность, сопротивление качению и поведение шин на мокром дорожном полотне. В заключении заметим, что сегодня очень часто вместо технического углерода в химическом составе той или иной шины применяется сера. Однако выбор того или иного компонента является скорее, вопросом экономической целесообразности. Что касается технологического момента, то разница в этом деле будет совсем не велика, однако цена готовой шины при этом может быть довольно ниже.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

bazliter.ru

Из чего получают резину: изготовление резиновых изделий

Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками.

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение. В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства. Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

Через 10 лет после первого применения натурального каучука

и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину. Сам процесс превращения каучука в резину назвали вулканизацией.

Конечно же, каучук отличается от резины.

Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки. Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании. Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук, так как на тот момент вся резина изготавливалась из сока тропических деревьев. Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции — полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой. Но что такое эбонит. Как оказывается, эбонит — это производная от процесса вулканизации каучука: если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал — этот материал и есть эбонит!

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ. Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин. Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта — грузовых автомобилей и самолётов, использовался

натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера — Натты был получен синтетический каучук, который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, — был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости. Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!). Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении — растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном — увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье, который гласит, что если воздействовать на систему , находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие — действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать — охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит.

А вот если растянуть — то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала. Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!). Каучук сжался — с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение. Естественно ожидать, что температура должна понизится, — что и происходит на самом деле!

Резина — как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса. Мы увидим, что та часть жгутов, которая нагрелась — сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова — к повороту колеса. Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении — растянутся!

fibradecor.ru

оборудование и технология. Из чего делают резину :: BusinessMan.ru

Резиновые материалы и комбинированные резинотехнические изделия невозможно заменить другой продукцией. Уникальное сочетание характеристик и эксплуатационных качеств позволяет использовать такие материалы в сложных рабочих процессах, дополняя устройство машин, станков, приборов и строительных конструкций. Современное производство резины заметно продвинулось технологически, что отразилось и на качестве выпускаемой продукции. Технологи стремятся повышать долговечность, прочность и стойкость изделий к воздействию сторонних факторов.

Из какого сырья делают резину?

Большая часть резиновых материалов получается в результате промышленной обработки синтетических и натуральных каучуковых смесей. Достигается эта обработка посредством сшивки каучуковых молекул химическими связями. Последнее время используется порошкообразное сырье для производства резины, характеристики которого специально рассчитаны на образование литьевых форм. Это готовые композиции на базе жидкого каучука, из которых в том числе выпускают эбонитовые изделия. Сам процесс вулканизации не обходится без специальных активаторов или агентов – это химические вещества, способствующие сохранению оптимальных рабочих качеств смеси. Обычно для данной задачи используют серу. Это компоненты, составляющие основу набора, требуемого для изготовления резины. Но, в зависимости от требуемых эксплуатационных качеств и назначения продукта, технологи вводят производственные этапы, на которых структура изделия обогащается и модифицирующими элементами.

Добавки для модификации резиновых смесей

В процессе изготовления резиновая смесь может наполняться ускорителями, активаторами, агентами вулканизации, смягчителями и другими компонентами. Поэтому вопрос о том, из чего делают резину, в немалой степени определяется вспомогательными добавками. Например, для сохранения структуры материала используют регенераты. С помощью данного наполнителя резиновый продукт может подвергаться вторичной вулканизации. Немалая часть модификаторов не оказывает влияния на конечные технико-эксплуатационные свойства, но играет существенную роль непосредственно в процессе изготовления. Тот же процесс вулканизации корректируют ускорители и замедлители химических реакций.

Отдельную группу добавок представляют пластификаторы, то есть смягчители. Их используют для понижения температуры при вулканизации и диспергирования других ингредиентов состава. И здесь может возникнуть другой вопрос – насколько добавки и сам каучук влияют на химическую безопасность формируемой смеси? То есть из чего делают резину с точки зрения экологической чистоты? Отчасти это действительно опасные для здоровья смеси, которые включают ту же серу, битумы и дибутилфталаты, стеариновые кислоты и т. д. Но часть ингредиентов представляют натуральные вещества – природные смолы, тот же каучук, растительные масла и восковые компоненты. Другое дело, что в разных смесях соотношение вредной синтетики и натуральных ингредиентов может меняться.

Этапы процесса изготовления резиновых изделий

Промышленное изготовление резины начинается с процесса пластификации сырья, то есть каучука. На этом этапе обретается главное качество будущей резины – пластичность. Посредством механической и термической обработки каучук смягчается до определенной степени. Из полученной основы в дальнейшем будет осуществлено производство резины, но перед этим пластифицированная смесь подвергается модификации рассмотренными выше добавками. На этой стадии формируется резиновый состав, в который добавляют серу и другие активные компоненты для улучшения характеристик состава.

Важным этапом перед вулканизацией является и каландрование. По сути, это формование сырой каучуковой смеси, прошедшей обогащение добавками. Выбор способа каландрирования определяет конкретная технология. Производство резины на этом этапе может предполагать также и выполнение экструзии. Если обычное каландрование ставит целью создание простых резиновых форм, то экструзия позволяет выполнять сложные изделия в виде шлангов, кольцевых уплотнителей, протекторов для автомобильных шин и т. д.

Вулканизация как завершающий этап производства

В процессе вулканизации заготовка проходит финальную обработку, благодаря которой изделие получает достаточные для эксплуатации характеристики. Сущность операции заключается в воздействии давления и высокой температуры на модифицированную каучуковую смесь, заключенную в металлическую форму. Сами формы устанавливаются в специальной автоклаве, подключенной к паровому нагревателю. В некоторых сферах производство резины может предусматривать и заливку горячей воды, которая стимулирует процесс распределения давления через текучую среду. Современные предприятия также стремятся к автоматизации этого этапа. Появляются все новые пресс-формы, которые взаимодействуют с подающими пар и воду форсунками на основе компьютерных программ.

Как производятся резинотехнические изделия?

Это комбинированные изделия, которые получаются путем соединения тканевых материалов с каучуковой смесью. В процессе изготовления резинотехнической продукции нередко используется паронит – гибридный материал, получаемый путем соединения термостойкой резины и неорганических наполнителей. Далее заготовка проходит обработку вальцеванием и вулканизацию. Получают резинотехнические изделия и с помощью шприц-машин. В них на заготовки оказывается термическое воздействие, после чего осуществляется пропуск по профилирующей головке.

Оборудование для процессов изготовления резины

Полный производственный цикл осуществляет целая группа машин и агрегатов, выполняющих разные задачи. Один лишь процесс вулканизации обслуживают котлы, прессы, автоклавы, форматоры и другие устройства, обеспечивающие промежуточные операции. Отдельный установки применяют для пластификации – типовая машина такого типа состоит из шипованного ротора и цилиндра. Вращение роторной части производится посредством ручного привода. Не обходится производство резины без варочных камер и каландровых агрегатов, которые осуществляют раскатку каучуковых смесей и термическое воздействие.

Заключение

Процессы изготовления резиновых изделий во многом стандартизированы как в плане механической обработки, так и в части химического воздействия. Но даже при условии использования одинаковых производственных аппаратов характеристики получаемых изделий могут быть разными. Это доказывает и резина отечественного производства, предлагающая разные наборы эксплуатационных свойств. Наибольшую долю резиновой продукции в российском сегменте промышленности занимают автомобильные шины. И в этой нише особенно ярко проявляются способности технологов к гибкой модификации составов в соответствии с жесткими требованиями к конечной продукции.

businessman.ru

Как делают шины для автомобилей?

Говоря об автомобильной резине, мы редко задумывается из чего и как делают этот товар. А между тем всё не так просто, как может показаться на первый взгляд. Технология производства покрышек включает множество этапов и нюансов. Начальной стадией создания автомобильных шин является разработка их профиля и рисунка протектора посредством специализированных компьютерных программ объёмного моделирования. Далее компьютер просчитывает и анализирует эффективность шины в различных ситуациях и условиях эксплуатации, после чего устраняются недостатки, пробные образцы нарезаются на специальных станках вручную и тестируются в реальных условиях.

В результате испытаний происходит сбор информации для сравнения с показателями лидеров рынка того же класса, после чего осуществляется финальная доводка, предшествующая запуску на конвейер и массовому производству.

Изготовление резиновой смеси

Материал, из которого изготовлена покрышка, имеет первостепенное значение. Следует понимать, что шины различных производителей существенно отличаются в первую очередь свойствами резины, состав которой зачастую является коммерческой тайной. Столь серьёзный подход объясняется тем, что резиновая смесь определяет технические характеристики шин, включая:

  • Уровень сцепления с дорогой.
  • Долговечность и надежность.
  • Сезонность и износостойкость.

Состав резины современных автопокрышек включает множество материалов и компонентов: всевозможных присадок и химических соединений, которые и определяют свойства и поведение шин. Подбором и комбинацией этих элементов занимаются целые лаборатории в каждой компании, ведь именно химические добавки и их дозировка позволяют изделию превзойти конкурентов. Базой же для всех служит обычная резина, состав которой ни для кого не является секретом. Она состоит из:

  1. Каучука, который бывает изопреновым (натуральным) и синтетическим, и является основой резиновой смеси (от 40 до 50 процентов состава).
  2. Технического углерода (промышленная сажа), благодаря молекулярным соединениям которого шина имеет не только чёрный цвет, но и становится прочной и устойчивой к износу и температурам (от 25 до 30 процентов состава).
  3. Кремниевой кислоты, повышающей показатели сцепления покрышки с влажным покрытием, и применяемой в основном иностранными шинниками (примерно 10 процентов состава).
  4. Смол и масел, выступающих вспомогательными составляющими для обеспечения мягкости и эластичности изделия (около 10-15 процентов состава).
  5. Вулканизирующих агентов, роль которых чаще всего отводится соединениям серы и специальным активаторам.

Отметим, что российский каучук признан лучшим во всём мире, а потому востребован и применяется большинством ведущих мировых компаний-производителей. А поскольку синтетический каучук уступает натуральному по всем показателям, то в этой области РФ останется лидером ещё очень долго.

Производство компонентов

Технологический процесс создания шины, кроме прочего, включает в себя несколько параллельных этапов изготовления её компонентов, среди которых:

  • Прорезиненная лента – это первичная заготовка для изготовления протектора, разрезаемая в зависимости от требуемого размера.
  • Брекер и каркас – элементы, несущие ответственность за устойчивость к порезам, прорывам и прочим повреждениям. Также брекер и каркас отвечают за жёсткость всей конструкции покрышки.
  • Борт шины — является наиболее жёсткой её частью, и обеспечивает герметичность при монтаже на обод колеса.

В качестве материала для каркаса и брекера современных шин служит либо металлокорд, либо стекловолокно. Последнее применяется при изготовлении покрышек класса «премиум», в то время как металлокорд незаменим в моделях, предназначенных для оснащения грузового автотранспорта.

Сборка и вулканизация

Заключительным этапом производства автопокрышки является сборка. Данная технологическая процедура выполняется методом наложения слоев каркаса, боковин, борта и протекторной части, и осуществляется на специальном сборочном барабане. После компоновки и придания нужной формы все составляющие элементы соединяются в монолитную конструкцию посредством процедуры вулканизации. Далее изделие проходит необходимые проверки, маркируется и отправляется на рынки по всему миру.

Видео по теме:

wheel-info.ru

📌 КАУЧУК И РЕЗИНА — это… 🎓 Что такое КАУЧУК И РЕЗИНА?


Синтез 1,4-цис-полиизопрена проводился несколькими различными путями с использованием регулирующих стереоструктуру катализаторов, и это позволило наладить производство различных синтетических эластомеров. Катализатор Циглера состоит из триэтилалюминия и четыреххлористого титана; он заставляет молекулы изопрена объединяться (полимеризоваться) с образованием гигантских молекул 1,4-цис-полиизопрена (полимера). Аналогично, металлический литий или алкил- и алкиленлитиевые соединения, например бутиллитий, служат катализаторами полимеризации изопрена в 1,4-цис-полиизопрен. Реакции полимеризации с этими катализаторами проводятся в растворе с использованием углеводородов нефти в качестве растворителей. Синтетический 1,4-цис-полиизопрен обладает свойствами натурального каучука и может использоваться как его заместитель в производстве резиновых изделий.
См. также ПЛАСТМАССЫ. Полибутадиен, на 90-95% состоящий из 1,4-цис-изомера, также был синтезирован посредством регулирующих стереоструктуру катализаторов Циглера, например триэтилалюминия и четырехиодистого титана. Другие регулирующие стереоструктуру катализаторы, например хлорид кобальта и алкилалюминий, также дают полибутадиен с высоким (95%) содержанием 1,4-цис-изомера. Бутиллитий тоже способен полимеризовать бутадиен, однако дает полибутадиен с меньшим (35-40%) содержанием 1,4-цис-изомера. 1,4-цис-полибутадиен обладает чрезвычайно высокой эластичностью и может использоваться как наполнитель натурального каучука. Тиокол (полисульфидный каучук). В 1920, пытаясь получить новый антифриз из этиленхлорида и полисульфида натрия, Дж.Патрик вместо этого открыл новое каучукоподобное вещество, названное им тиоколом. Тиокол высокоустойчив к бензину и ароматическим растворителям. Он имеет хорошие характеристики старения, высокое сопротивление раздиру и низкую проницаемость для газов. Не будучи настоящим синтетическим каучуком, он, тем не менее, находит применение для изготовления резин специального назначения.
Неопрен (полихлоропрен). В 1931 компания «Дюпон» объявила о создании каучукоподобного полимера, или эластомера, названного неопреном. Неопрен изготавливают из ацетилена, который, в свою очередь, получают из угля, известняка и воды. Ацетилен сначала полимеризуют до винилацетилена, из которого путем добавления хлороводородной кислоты производят хлоропрен. Далее хлоропрен полимеризуют до неопрена. Помимо маслостойкости неопрен имеет высокую тепло- и химическую стойкость и используется в производстве шлангов, труб, перчаток, а также деталей машин, например шестерен, прокладок и приводных ремней. Буна S (SBR, бутадиенстирольный каучук). Синтетический каучук типа буна S, обозначаемый как SBR, производится в больших реакторах с рубашкой, или автоклавах, в которые загружают бутадиен, стирол, мыло, воду, катализатор (персульфат калия) и регулятор роста цепи (меркаптан). Мыло и вода служат для эмульгирования бутадиена и стирола и приведения их в близкий контакт с катализатором и регулятором роста цепи. Содержимое реактора нагревается до примерно 50° С и перемешивается в течение 12-14 ч; за это время в результате процесса полимеризации в реакторе образуется каучук. Получающийся латекс содержит каучук в форме малых частиц и имеет вид молока, очень напоминающий натуральный латекс, добытый из дерева. Латекс из реакторов обрабатывается прерывателем полимеризации для остановки реакции и антиоксидантом для сохранения каучука. Затем он очищается от избытка бутадиена и стирола. Чтобы отделить (путем коагуляции) каучук от латекса, он обрабатывается раствором хлорида натрия (пищевой соли) в кислоте либо раствором сульфата алюминия, которые отделяют каучук в форме мелкой крошки. Далее крошка промывается, сушится в печи и прессуется в кипы. Из всех эластомеров SBR используется наиболее широко. Больше всего его идет на производство автомобильных шин. Этот эластомер сходен по свойствам с натуральным каучуком. Он не маслостоек и в большинстве случаев проявляет низкую химическую стойкость, но обладает высоким сопротивлением удару и истиранию.
Латексы для эмульсионных красок. Бутадиен-стирольные латексы широко используются в эмульсионных красках, в которых латекс образует смесь с пигментами обычных красок. В таком применении содержание стирола в латексе должно превышать 60%.
Низкотемпературный маслонаполненный каучук. Низкотемпературный каучук — особый тип каучука SBR. Он производится при 5° С и обеспечивает лучшую износостойкость шин, чем стандартный SBR, полученный при 50° С. Износостойкость шин еще более повышается, если низкотемпературному каучуку придать высокую ударную вязкость. Для этого в базовый латекс добавляют некоторые нефтяные масла, называемые нефтяными мягчителями. Количество добавляемого масла зависит от требуемого значения ударной вязкости: чем оно выше, тем больше вводится масла. Добавленное масло действует как мягчитель жесткого каучука. Другие свойства маслонаполненного низкотемпературного каучука такие же, как у обычного низкотемпературного.
Буна N (NBR, бутадиенакрилонитрильный каучук). Вместе с буна S в Германии был также разработан маслостойкий тип синтетического каучука под названием пербунан, или буна N. Основной компонент этого нитрильного каучука — также бутадиен, который сополимеризуется с акрилонитрилом по существу по тому же механизму, что и SBR. Сорта NBR различаются содержанием акрилонитрила, количество которого в полимере варьирует от 15 до 40% в зависимости от назначения каучука. Нитрильные каучуки маслостойки в степени, соответствующей содержанию в них акрилонитрила. NBR использовался в тех видах военного оборудования, где требовалась маслостойкость, например в шлангах, самоуплотняющихся топливных элементах и конструкциях транспортных средств.
Бутилкаучук. Бутилкаучук — еще один синтетический каучук — был открыт в 1940. Он замечателен своей низкой газопроницаемостью; камера шины из этого материала удерживает воздух в 10 раз дольше, чем камера из натурального каучука. Бутилкаучук изготавливают полимеризацией изобутилена, получаемого из нефти, с малой добавкой изопрена при температуре -100° С. Эта полимеризация не является эмульсионным процессом, а проводится в органическом растворителе, например метилхлориде. Свойства бутилкаучука могут быть сильно улучшены термообработкой маточной смеси бутилкаучука и газовой сажи при температуре от 150 до 230° С. Недавно бутилкаучук нашел новое применение как материал для протекторов шин ввиду его хороших ходовых характеристик, отсутствия шума и превосходного сцепления с дорогой. Бутилкаучук несовместим с натуральным каучуком и SBR и, значит, не может быть смешан с ними. Однако после хлорирования до хлорбутилкаучука он становится совместимым с натуральным каучуком и SBR. Хлорбутилкаучук сохраняет низкую газопроницаемость. Это свойство используется при изготовлении смешанных продуктов хлорбутилкаучука с натуральным каучуком или SBR, которые служат для производства внутреннего слоя бескамерных шин.
Этиленпропиленовый каучук. Сополимеры этилена и пропилена могут быть получены в широких диапазонах составов и молекулярных масс. Эластомеры, содержащие 60-70% этилена, вулканизуются с пероксидами и дают вулканизат с хорошими свойствами. Этиленпропиленовый каучук имеет превосходную атмосферо- и озоностойкость, высокую термо-, масло- и износостойкость, но также и высокую воздухопроницаемость. Такой каучук изготавливается из дешевых сырьевых материалов и находит многочисленные применения в промышленности. Наиболее широко применяемым типом этиленпропиленового каучука является тройной этиленпропиленовый каучук (с диеновым сомономером). Он используется в основном для изготовления оболочек проводов и кабелей, однослойной кровли и в качестве присадки для смазочных масел. Его малая плотность и превосходная озоно- и атмосферостойкость обусловливают его применение в качестве кровельного материала.
Вистанекс. Вистанекс, или полиизобутилен, — полимер изобутилена, также получаемый при низких температурах. Он подобен каучуку по свойствам, но в отличие от каучука является насыщенным углеводородом и, значит, не может быть подвергнут вулканизации. Полиизобутилен озоностоек.
Коросил. Коросил, каучукоподобный материал, — это пластифицированный поливинилхлорид, приготовленный из винилхлорида, который, в свою очередь, получают из ацетилена и хлороводородной кислоты. Коросил замечательно стоек к действию окислителей, в том числе озона, азотной и хромовой кислот, и поэтому используется для внутренней облицовки цистерн с целью защиты их от коррозии. Он непроницаем для воды, масел и газов и в силу этого находит применение как покрытие для тканей и бумаги. Каландрованный материал используется в производстве плащей, душевых занавесок и обоев. Низкое водопоглощение, высокая электрическая прочность, негорючесть и высокое сопротивление старению делают пластифицированный поливинилхлорид пригодным для изготовления изоляции проводов и кабелей.
Полиуретан. Класс эластомеров, известных как полиуретаны, находит применение в производстве пеноматериалов, клеев, покрытий и формованных изделий. Изготовление полиуретанов включает несколько стадий. Сначала получают сложный полиэфир реакцией дикарбоновой кислоты, например адипиновой, с многоатомным спиртом, в частности этиленгликолем или диэтиленгликолем. Полиэфир обрабатывают диизоцианатом, например толуилен-2,4-диизоцианатом или метилендифенилендиизоцианатом. Продукт этой реакции обрабатывают водой и подходящим катализатором, в частности n-этилморфолином, и получают упругий или гибкий пенополиуретан. Добавляя диизоцианат, получают формованные изделия, в том числе шины. Меняя соотношение гликоля и дикарбоновой кислоты в процессе производства сложного полиэфира, можно изготовить полиуретаны, которые используются как клеи или перерабатываются в твердые или гибкие пеноматериалы либо формованные изделия. Пенополиуретаны огнестойки, имеют высокую прочность на растяжение, очень высокое сопротивление раздиру и истиранию. Они проявляют исключительно высокую несущую способность и хорошее сопротивление старению. Вулканизованные полиуретановые каучуки имеют высокие прочность на растяжение, сопротивление истиранию, раздиру и старению. Был разработан процесс получения полиуретанового каучука на основе простого полиэфира. Такой каучук хорошо ведет себя при низких температурах и устойчив к старению.
Кремнийорганический каучук. Кремнийорганические каучуки не имеют себе равных по пригодности к эксплуатации в широком температурном интервале (от -73 до 315° С). Для вулканизованных кремнийорганических каучуков была достигнута прочность на растяжение около 14 МПа. Их сопротивление старению и диэлектрические характеристики также весьма высоки.
Хайпалон (хлорсульфоэтиленовый каучук). Этот эластомер хлорсульфонированного полиэтилена получают обработкой полиэтилена хлором и двуокисью серы. Вулканизованный хайпалон чрезвычайно озоно- и атмосферостоек и имеет хорошую термо- и химическую стойкость.
Фторсодержащие эластомеры. Эластомер кель-F — сополимер хлортрифторэтилена и винилиденфторида. Этот каучук имеет хорошую термо- и маслостойкость. Он стоек к действию коррозионно-активных веществ, негорюч и пригоден к эксплуатации в интервале от -26 до 200° С. Витон А и флюорел — сополимеры гексафторпропилена и винилиденфторида. Эти эластомеры отличаются превосходной стойкостью к действию тепла, кислорода, озона, атмосферных факторов и солнечного света. Они имеют удовлетворительные низкотемпературные характеристики и пригодны к эксплуатации до -21° С. Фторсодержащие эластомеры используются в тех приложениях, где требуется стойкость к действию тепла и масел.
Специализированные эластомеры. Производятся специализированные эластомеры с разнообразными физическими свойствами. Многие из них очень дороги. Наиболее важные из них — акрилатные каучуки, хлорсульфонированный полиэтилен, сополимеры простых и сложных эфиров, полимеры на основе эпихлоргидрина, фторированные полимеры и термопластичные блок-сополимеры. Они используются для изготовления уплотнений, прокладок, шлангов, оболочек проводов и кабелей и клеев.
См. также
ХИМИЯ ОРГАНИЧЕСКАЯ;
ПЛАСТМАССЫ;
КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ.
ЛИТЕРАТУРА
Справочник резинщика. М., 1971 Догадкин Б.А. Химия эластомеров. М., 1981 Лепетов В.А., Юрцев Л.Н. Расчеты и конструирование резиновых изделий. Л., 1987

Энциклопедия Кольера. — Открытое общество. 2000.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *