Реальность 3d – United 3D Labs: Создаем виртуальную реальность

Содержание

United 3D Labs: Создаем виртуальную реальность

Лаборатория интерактивной графики United 3D Labs разрабатывает решения виртуальной реальности (virtual reality), в том числе:
  • промышленные VR тренажеры;
  • симуляторы в виртуальной реальности;
  • музейные экспозиции и интерактивные VR инсталляции;
  • виртуальные туры;
  • игры.
Мы работаем со всеми распространенными очками виртуальной реальности – HTC Vive, HTC Focus, Oculus Rift, Samsung Odyssey, Windows Mixed Reality. Применяем системы трекинга VIVE Tracking, контроллеры Leap Motion, Myo и Kinect. Используем программное обеспечение Unreal Engine, Unity и Unigine.

Загадка виртуальной реальности

Виртуальная реальность (Virtual Reality, VR) – пожалуй, наиболее загадочная и популярная часть компьютерной графики. Множество фантастических книг и фильмов превозносят ее преимущества и пугают возможными последствиями использования. Виртуальная реальность переносит пользователя в искусственный мир, созданный разработчиками. В отличие от дополненной реальности, где основой является реальное изображение, передаваемое видеокамерой, в виртуальной реальности все объекты созданы в программах разработки компьютерной графики.

Различные применения технологий виртуальной реальности известны уже несколько десятков лет, они активно используются в военной сфере, космической индустрии, медицине. Обычные же пользователи реально столкнулись с виртуальной реальностью совсем недавно – с появлением в широкой продаже в 2016 году очков виртуальной реальности Oculus Rift и HTC Vive, а также всевозможных VR шлемов для мобильных телефонов.

Не только VR очки

Надо заметить, что виртуальная реальность – это далеко не только очки и шлемы. Многоэкранные конфигурации, комнаты CAVE (CAVE Automatic Virtual Environment), Virtual Reality Video Wall с углом обзора боле 180 градусов и т. д., все эти решения так же призваны перенести пользователя в виртуальный мир. Эти системы весьма недешевы и крайне сложны с технической точки зрения, но в то же время, у них есть ряд преимуществ, начиная с основного – отсутствие необходимости надевать достаточно неудобные очки виртуальной реальности.

Применение виртуальной реальности

Разумеется, в первую очередь, за возможности, открываемые доступными VR очками, ухватились создатели компьютерных игр – перенести пользователя в виртуальный мир игры конечно же гораздо интереснее (и сулит гораздо большие прибыли), чем показывать этот самый мир на экране монитора. Но у относительно дешевых потребительских очков виртуальной реальности есть и более серьезное применение. То, что раньше было доступно только военным, покупавшим за 50 тысяч долларов пару очков, теперь доступно музеям, школам и институтам. Всевозможные реалистичные виртуальные туры, реконструкции объектов и событий, виртуальные эксперименты, возможность увидеть своими глазами то, что невозможно увидеть в реальной жизни – вот только малая часть возможностей, открываемых очками виртуальной реальности. И разумеется, за уникальные возможности виртуальной реальности по созданию реалистичных тренажеров и симуляторов ухватились промышленные предприятия.

Standalone virtual reality headset

Стоит обратить отдельное внимание на сегмент беспроводных virtual reality очков, таких как HTC Focus или Oculus Go.  Они, конечно, проигрывают своим старшим собратьям Oculus Rift и HTC Vive по сложности и качеству графики, но у них есть огромное преимущество – мобильность. Они не привязаны проводом к стационарному компьютеру. А вычислительной мощности для показа проектов той же самой архитектурной визуализации или небольшого тренажера у них вполне достаточно.

Лаборатория интерактивной графики United 3D Labs приглашает Вас в наш демозал. Мы будем рады показать разработанные нами решения виртуальной реальности и продемонстрировать основные модели VR очков, существующие на рынке, рассказать об их сильных и слабых сторонах.

uni3dlabs.ru

разница между 3D и виртуальной реальностью / КРОК corporate blog / Habr


Обучение машинистов у китайского производителя «Сапсанов». Они взяли головной вагон с кабиной машиниста, скопировали все приборы и добавили «вид в окна» с помощью 3D-экранов.

Я занимаюсь технологиями виртуальной реальности для инженеров и для обучения персонала. Это такие системы, где вы лично можете походить по нефтяной платформе или АЭС, отработать меры в случае аварии на практике и своими трудовыми руками в перчатках закрутить Самый Главный Вентиль.

Так вот, заказчики регулярно путают терминологию и технологии, в чём им очень помогают, скажем так, не совсем профессиональные игроки рынка. Я бы хотел внести ясность и ещё раз разложить по полочкам, что есть что. Сразу скажу, что после первой пробы иммерсионной системы все вопросы отпадают, но здесь я даже примерно не смогу передать ощущения, поэтому буду писать слова.

Миф 1: 3D-картинки — это не виртуальная реальность

Обычные 3D-картинки на компьютере — это далеко не виртуальная реальность. Да, там есть модели, рендер и все дела, но вопрос в том, как это воспринимается. Обучение в такой системе сотрудника АЭС не сильно далеко уходит по скорости и полезности от обучения по плакатам. Дело, опять же, в том, что нет эффекта погружения, ради которого и городят весь лес с ВР.

На объектах повышенной ответственности предполагается, что в рамках отработки чрезвычайных ситуаций на тренажёре вы получаете более-менее точное представление не логикой, а «на шкуре» в целом. Знаете, это как у пилотов самолётов — сначала переход с компьютерного тренажёра на тренажёр с реалистичными органами управления и моделированием наклонов резко расстраивает все навыки. Вроде, хорошо летал по картинкам, а тут как будто в первый раз. И во второй раз похожий скачок происходит при переходе от моделирующего тренажёра к настоящему воздушному судну.

Научиться по картинкам можно, но это в разы сложнее и дольше, плюс не даёт необходимого эффекта. Почему? Потому что вы не будете погружены в происходящее. Когда я бежал вместе со всеми с нефтяной платформы, где произошёл взрыв, я запоминал зрительно дорогу, крутил вентили руками, совершенно точно знал своё положение в пространстве и габариты разных вещей, чётко видел всё в объёме. А в 3D на экране даже нет возможности оценить расстояние до чего-то глазами, не говоря уж о других вещах. А это в симуляции часто очень и очень важно. В МЭИ, например, студенты засовывают голову в «работающую» по САПР-модели турбину и всё сами собирают-разбирают.


По презентации с такими картинками, конечно, можно догадаться, как устроен двигатель поезда. Но ощущения в сравнении с тем, что вы бы видели его реально в натуральную величину и разбирали бы сами руками, как небо и земля. Студенты МИИТ РЖД работают вот с такими моделями и играют в «симулятор техника от первого лица» почти каждый день.


Из нашего дата-центра

3D-фильм — это не ВР

«Ок, — говорят заказчики, понимающие этот момент. — Давайте сделаем 3D-фильм. Мы видели 3D-фильмы в кинотеатрах, очень впечатляет. Надо делать инструктаж по эвакуации или мерам при аварии таким же. Получится круто, мы даже сами посмотрим».

Проблема в том, что фильм и управляемая реальность — это две разные вещи. Например, во втором случае есть сценарии, которые могут срабатывать с различной вероятностью, или тренер может вызывать различные развития событий. В иммерсионной системе ВР вы лично делаете всё то, что нужно для, например, эвакуации. Бежите в нужную сторону, работаете с нужными приборами и инструментами, в конце концов получаете мгновенную обратную связь при совершении ошибок. Это как игра, которую хочется пройти, но в которой при этом есть свобода действий. Естественно, игры обучают куда лучше, чем фильмы.

Тесты наших западных коллег показали, что по фильму последовательность действий запоминается очень слабо.

Фильм — это круто, но для настоящего обучения нужны системы, где человек делает всё сам. Я не знаю ни одного пилота, научившегося летать по сериалам.

Стереосистема плюс мышь и клавиатура — это ещё не ВР

Третья проблема в том, что в момент понимания того, зачем же всё-таки нужна виртуальная реальность, заказчик решает остановиться на стереосистеме с обычными органами управления. Например, мышкой и клавиатурой. Ощущения, конечно, уже лучше. По опыту скажу, что, например, наша 3D-модель дата-центра очень хороша для того, чтобы бегать по ней в Counter-Strike. Мы, конечно, стали ориентироваться во всех его закутках с закрытыми глазами, но это всё ещё мало помогает во время отработки действий при потенциальных ЧС. Потому что нужно идти ногами в дата-центр и собственными руками уже на месте исправлять ситуацию.

Клавиатура и мышка — это барьер, который мешает перейти от режима симуляции к режиму, когда вы, выпрямившись во весь рост, натурально ходите по объекту и запоминаете все действия кинестетически, а не визуально. То есть переход от визуальной памяти к механической, моторике, если угодно. А последнее — именно то, что нужно для такого обучения при ЧС. Чего нет в моторике, то будет сразу позабыто при первых звуках сирены. Или неправильно сделано. Или не вовремя. Или человек будет мучительно раздумывать перед каждым шагом, переводя логический опыт в практические движения.

Сидение за компьютером и тыркание мышкой не даёт полного впечатления. Когда ты в виртуальной среде бегаешь по нефтяному объекту и у тебя происходит что-то — слышен звук, можно ощупать клапан. Вместо механической памяти (что куда кликать) появляется память о том, что и как делать, на каком расстоянии в реальном масштабе какой объект от другого расположен.

Мировая практика показала, что отработка сценариев в среде виртуальной реальности — один из лучших способов передать критические знания от старшего поколения к молодому. Старый опытный ядерщик заходит с молодым на объект и показывает, что есть что. А потом запускает сценарий одной из аварий и смотрит, что как, комментирует. И надо сказать, что молодые особенно хорошо «спасаются». Обучение проходит быстро, и процесс передачи знания становится более веселым и действенным.

Оккулус и подобные системы — это не промышленные решения

«Ок, — говорит заказчик. — Понятно, походил я по вашему кубу, открутил какую-то фиговину из турбины, положил в карман. Но когда выходил из виртуальной реальности, фиговина что-то пропала. Всё понятно. Давайте делать у нас, только на шлемах ВР — я тут в торговом центре недавно такой надевал. Самое то».

Проблема в том, что шлемы виртуальной реальности — это такая штука, от которой минут через 10–15 вас начнёт нереально тошнить. Плюс даже в самых современных шлемах пока видны большие красивые пиксели, не дающие нормально сфокусировать зрение на чём нужно.

И ещё одно. В узком углу обзора мозжечок чувствует, что что-то не так. Это как в автомобиле играть на телефоне в «Кармагеддон»: вроде движение автомобиля в реальности и управление вашей машиной в игре не связаны, а нет, моторные навыки страдают. И долго вы нормально играть не сможете.

Шлемы хороши для потребительского сегмента. Но если вы гоняете многочасовое обучение (а элементарная эвакуация отрабатывается 6 часов до полного автоматизма), люди просто сойдут с ума. Готовьте бумажные пакетики.

Вот типовые плюсы-минусы комнат виртуальной реальности и шлемов (Head mounted displays):

  • Комнаты дороже, шлемы существенно дешевле.
  • Для комнат нужно специальное помещение, для шлемов — нет.
  • Комнату тяжелее перевозить с места на место, шлем — легче.
  • Шлемы дают низкое разрешение, комнаты — высокое.
  • В комнатах есть совместная работа над объектом (обучаемый и наставник в одном физическом помещении и наставник может чуть ли не вести за руку ученика). В шлемах такого нет.
  • В комнатах есть возможность свободно перемещаться, что резко увеличивает полезную механическую память. В шлемах — только крутить головой.
  • В комнатах моделируется открытая среда, в шлемах — всегда туннель зрения.
  • Комнаты снабжаются точными датчиками положения объектов внутри, шлемы чаще всего полагаются на акселерометры с высокими погрешностями. Отсюда — разница в интерактивности и точности действий.
  • Шлемы дают ощущение головокружения и замкнутого пространства, комнаты — нет.
  • Текущие шлемы сильно ограничены по функциональности и производительности, узкое место комнат — контроллер (ноутбук или кластер), что позволяет использовать их годами под разные проекты.
  • Комнаты занимают существенно больше места при хранении, шлемы легко убираются на склад.
Что такое виртуальная реальность

ВР — это слаженно работающий набор систем контента, проектора, очков, синхронизатора для мерцания очков и контроллера (мощного компьютера или кластера). Правильно собранная система ВР позволяет получить на объектах повышенной ответственности главное — научить персонал мгновенно принимать решения в случае чрезвычайной ситуации. На ряде промышленных объектов разница в 3–5 секунд может оказаться решающей и стоить даже не пару миллионов долларов (стоимость оборудования), а десятки человеческих жизней. Вот почему всё то, что позволяет максимально точно перенести опыт аварийной ситуации, заслуживает внимания.

Разумеется, если есть возможность отрабатывать «в натуре» ЧС, этим надо пользоваться. Но единственный известный мне крупный стенд такого рода — это копия МКС (ранее была копия МИРа), на которой будущие экипажи проходят обучение. И если где-то будет разгерметизация, дышать парни тоже не смогут — такого ВР пока не умеет. Но, разумеется, где нельзя взять и скопировать для обучающих целей АЭС, нефтяную платформу, любой промышленный объект (например, цех по строительство самолетов или крейсеров, горное производство или ещё что-то), используется техника ВР как наиболее близкая. Плюс «физические» тренажёры по отдельным узлам.

habr.com

Дополненная реальность с 3D трекингом

2-5 декабря в Баку Экспо Центре состоялась 20-я Юбилейная Азербайджанская Международная Выставка и Конференция «Телекоммуникации и Информационные Технологии» Bakutel, в которой приняла активное участие компания Polymedia — лидер российского рынка систем отображения информации. Специально для стенда компании Лаборатория компьютерной графики United 3D Labs разработала приложение Дополненной реальности для iPad’а.

Приложение уникально для российского рынка компьютерной графики тем, что использует технологию 3D трекинга, когда маркером дополненной реальности является не плоское изображение, а сам реальный трехмерный объект!

На подиуме была расположена физическая 3D модель нефтедобывающей платформы высотой 60 см (кстати, сама модель была изготовлена на 3D принтере). Предварительно, при помощи специального программного обеспечения, 3D модель была оцифрована и создан 3D маркер. Затем этот маркер вставлен в приложение для iPad’а. Т.е., используя 3D маркер, планшет с установленной программой дополненной реальности может совершенно точно определить, с какого именно ракурса он нацелен на 3D модель, находящуюся на стенде. Никаких двухмерных маркеров просто не требуется!

Однако, отсутствие обычных маркеров даже не самое важное преимущество. Ведь теперь система дополненной реальности может определять ракурс, с которого зритель смотрит на нефтедобывающую платформу! Все пространство вокруг 3D модели было разбито на 8 секторов, в каждом из которых была создана (и воспроизводилась) своя виртуальная трехмерная сцена. Перемещаясь вокруг модели нефтедобывающей платформы, зритель мог наблюдать на экране планшета сменяющие друг друга анимированные 3D сцены: вертолет, летающий вокруг вышки, или подплывающий корабль; история нефтедобычи в Азербайджане или сегодняшнее состоянием отрасли; предназначение отдельных элементов платформы и ее размеры.

И маленькие, и большие посетители выставки были буквально потрясены тем, как «оживает» созданное дизайнерами Студии компьютерной графики United 3D Labs пространство в Дополненной реальности вокруг 3D модели платформы!

Стоит отметить, что демонстрация возможностей 3D трекинга на стенде компании Polymedia служила не только для развлечения посетителей выставки. Технология Дополненной реальности открывает широчайшие перспективы для использования в производстве, образовании, сфере infotainment. Использование реальных физических объектов в качестве маркеров вместе с возможностью установки программного обеспечения на легкие и удобные планшеты формирует уникальные возможности для создания инструкций, демонстрации скрытых динамических процессов, разработки учебных пособий. Разумеется, компания Polymedia — ведущий системный интегратор в сфере российского образования — не могла остаться в стороне от использования столь многообещающей технологии.

uni3dlabs.ru

United 3D Labs: Создаем дополненную реальности

60 миллиардов (!) долларов в 2023 году

Дополненная реальность (Augmented Reality, AR) – самый быстрорастущий рынок современных визуальных технологий, который, по прогнозам экспертов, достигнет объема 60 миллиардов долларов к 2023 году (в 2018 году – 11,4 миллиардов долларов). Что примечательно, при этом он превысит объем рынка виртуальной реальности в 3 раза.

Что такое дополненная реальность?

Дополненная реальность – это когда изображение реального мира дополняется виртуальными объектами (в большинстве случаев трехмерными). В отличие от виртуальной реальности, где все объекты полностью выдуманы воображением создателей, в дополненной реальности важна, в первую очередь, реальность, а виртуальные объекты служат для передачи дополнительной информации, имеющей непосредственное отношение к реальным объектам. Например, мы смотрим через очки дополненной реальности на колесо автомобиля, стоящего перед нами, и видим не только само колесо, но и подробную пошаговую инструкцию по его замене. При этом инструкция состоит из анимированных картинок, накладываемых непосредственно на изображение реального колеса, что сильно облегчает неспециалисту понимание процесса монтажа. Начальник производственного участка, идя по цеху в AR очках Microsoft Hololens, сразу видит цифры выработки для каждого станка, количество брака и процент выполнения плана. Благодаря augmented reality покупатель в магазине, наведя свой смартфон на какой-либо товар, может получить информацию о его составе, сегодняшних скидках или даже сыграть в промо-игру, победив в которой, он получит товар бесплатно.

Зачем нужна дополненная реальность?

Применение технологии дополненной реальности воистину безгранично. Школьные классы и ночные клубы, музеи и операционные, магазины и поля сражений – везде нужна дополнительная информация или полезны вспомогательные виртуальные объекты. А значит и уместна дополненная реальность. Но, разумеется, наибольшее применение дополненная реальность находит у промышленных предприятий. Собственно, именно из этого и следуют фантастические миллиарды аналитиков. Цифровые двойники, системы «Удаленный помощник», инструкции по эксплуатации и регламенты ремонтных работ, использующие решения виртуальной реальности, – все эти решения ведут к сокращению простоев или росту производительности труда, а значит и к большей прибыльности.

Как работает дополненная реальность?

Технология любой дополненной реальности базируется на распознавании программным обеспечением изображения, передаваемого с камеры устройства. В самом простом случае, система распознает маркеры – специальные (обычно черно-белые) рисунки, нанесенные на реальные объекты. Более сложные алгоритмы распознают любые изображения (а не только маркеры), их нужно лишь предварительно показать системе – так называемая markerless технология. Еще более продвинутые системы распознают сами трехмерные объекты – 3D marker. И, наконец, технология, используемая в Augmented Reality очках Microsoft Hololens или в пакетах ARKit / ARCore, – ПО устройства анализирует окружающее пространство и строит его 3D модель.

Mixed Reality

К дополненной реальности тесно примыкает концепция смешанной реальности (Mixed Reality, MR). С ней мы сталкиваемся, когда, например, смотрим промо ролики VR игр, где реального игрока перемещают в игровое окружение. Смешанная реальность очень похожа на дополненную, в ней также присутствуют и реальные, и виртуальные объекты. Не вдаваясь в нюансы, для простоты можно считать, что виртуальная реальность – это когда много реального, в которое добавляются элементы виртуального, а смешанная реальность – наоборот, когда много виртуального в которое привносятся элементы реальности.

Специалисты United 3D Labs в полной мере владеют всеми технологиями дополненной реальности. Мы разрабатываем решения дополненной реальности для AR очков, мобильных устройств и стационарных компьютеров и с удовольствием их Вам продемонстрируем в нашем демонстрационном зале.

uni3dlabs.ru

Блог Лаборатории Маугри

8 Августа 2016


Сегодня технология виртуальной реальности помогает музеям перейти на качественно новый уровень взаимодействия с посетителями. С помощью панорамного видео и 3D-графики каждый желающий получает возможность увидеть закрытые для посещения архивы музеев, утерянные экспонаты или реконструированные исторические памятники. Кроме того, виртуальная реальность — это отличный способ посетить удаленные архитектурные объекты и выставочные залы в любой точке земного шара. Наша статья поможет разобраться в устройствах для создания виртуальной реальности, расскажет об истории этой технологии и о применении виртуальной реальности в музеях.

Facebook

Мой мир

Вконтакте

Одноклассники

Google+


Технология видео 360° позволяет создавать панорамные фильмы с различной степенью интерактивности, где зритель по своему желанию управляет ракурсом просмотра. Такое видео можно посмотреть в шлеме виртуальной реальности, с помощью специального приложения на смартфоне или на дисплее персонального компьютера.

Опыт туристов, совершивших экскурсию в древнюю пирамиду или посетивших выставку в Лувре, который раньше был доступен немногим, теперь сможет разделить каждый желающий за счет полного погружения в виртуальную реальность.

Виртуальная реальность (virtual reality,VR) – это компьютерная имитация реального или вымышленного мира, в который погружается и с которым взаимодействует человек. Не просто искусственный мир, а сложная и отлаженная система устройств, способных синхронно воздействовать на органы чувств.

Кажется, что виртуальная реальность была придумана и создана лишь в последние десятилетия. Однако эту идею начали воплощать в жизнь почти 100 лет назад.
История виртуальной реальности
История виртуальной реальности началась задолго до появления первых компьютеров. В 1929 году был разработан авиасимулятор «Link Trainer», предназначенный для обучения пилотов. Авиасимулятор был закреплен на шарнире и напоминал маленький самолет с короткими крыльями. Внутри находились авиаприборы, кресло и наушники с микрофоном для общения с тренером.

Link Trainer во время его использования на станции Британской авиации и флота в 1943 году

В 1956 году кинематографист Мортон Хейлиг, которого позже назвали «отцом виртуальной реальности», взялся за разработку непростого механизма, способного имитировать поездку на мотоцикле по улицам Бруклина. Он хотел создать «кино будущего», главная идея которого заключалась в полном погружении человека в специально подготовленный фильм при помощи тряски, шума, ветра и запахов. Проект получил название «Sensorama» и был запатентован. Принцип этого устройства стал основой для создания современных 4D-кинотеатров.

Рекламный плакат «Sensorama»

Следующий важнейший рывок в области VR-технологий и создании той виртуальной реальности, которую мы с вами знаем, произошел в 1977 году. Первой современной VR-системой стала «Кинокарта Аспена», разработанная в Массачусетском Технологическом Институте. Эта компьютерная программа симулировала прогулку по городу штата Колорадо, давая возможность выбрать между разными способами отображения местности: летний и зимний варианты виртуальной прогулки по Аспену были основаны на реальных фотографиях.

Демонстрация работы «Кинокарты Аспена»

До конца восьмидесятых технология виртуальной реальности считалась перспективной, но вскоре из-за сложности реализации и дороговизны оборудования интерес к ней угас. Снова о виртуальной реальности заговорили только в 2012 году, когда появились устройства для погружения в виртуальную реальность, доступные широкому кругу людей.
Технологии виртуальной реальности
Крупнейшие компании (Facebook, Nokia, Samsung, Google и др.) в настоящее время ведут разработки камер для съемки видео в формате 360°, гарнитур виртуальной реальности для различных смартфонов и стационарных компьютеров, а также различных звукозаписывающих устройств, обеспечивающих создание объемного звука и позволяющих реализовать целый комплекс технологий «мультимедиа 360°».
Камеры для съемки видео 360°
Камеры для съемки панорамного видео называются сферическими и состоят из нескольких видеокамер, которые производят синхронную съемку. Количество объективов колеблется от 2 до 16, а обработка видео осуществляется как в самой камере, так и в специальных программах. Помимо камер именитых марок (Google, Samsung, LG, Nokia, GoPro, Nikon, Kodak, Ricoh) существует множество других — Giroptic, Bublcam, Vuze и т.д.

Камеры для съемки видео 360°

Бинауральный звук
Особой задачей при создании контента для виртуальной реальности является запись и воспроизведение объемного звука – ведь пользователь, находясь в виртуальной реальности, должен слышать разный звук в зависимости от положения головы.

В компьютерных играх эта проблема решена с помощью специальных программных средств, задающих расположение источников звука в виртуальном пространстве. Однако с появлением формата «Видео 360°» возникла необходимость записывать звук предельно точно – так, как его слышит человек, стоящий в определенной точке.

Для этой цели используется так называемый бинауральный звук – он записывается на специальные микрофоны, по форме повторяющие ушную раковину человека.

Устройства для записи бинаурального звука

Шлемы виртуальной реальности
Шлем виртуальной реальности позволяет частично погрузиться в иллюзорный мир, создав зрительный и акустический эффект присутствия. Название «шлем» достаточно условное: современные модели гораздо больше похожи на очки, чем на шлем.

Gear VR — шлем виртуальной реальности от Samsung

Существует два вида шлемов виртуальной реальности: полноценные, имеющие свой процессор и подключающиеся к компьютеру, а также мобильные, в которые вставляется смартфон со специальным приложением.

В полноценных шлемах (например, Oculus Rift, HTC Vive и Sony PlayStation VR) есть два встроенных дисплея — когда вы надеваете устройство, они находятся в нескольких сантиметрах от глаз. На дисплеи передается одна и та же картинка, но с небольшим смещением. Перед дисплеями находятся две искривляющие изображение линзы, которые создают эффект объемного изображения. Чтобы в виртуальном мире можно было смотреть по сторонам при повороте головы, в шлеме имеется несколько датчиков: магнитометр, гироскоп и акселерометр. Еще один — трекер с инфракрасными светодиодами — должен стоять на столе, смотреть на человека и фиксировать его положение в пространстве. Он требуется для игр, где допускается свобода передвижения. К устройству также подсоединяется USB-кабель для передачи данных и питания.

Шлем виртуальной реальности Oculus Rift

Самым современным шлемом виртуальной реальности на сегодняшний день является Oculus Rift. Отличительной особенностью Oculus Rift является линзовый способ построения изображения – зритель, надевший шлем, смотрит на стереоизображение не напрямую, а через специальные асферические линзы. С помощью линз удалось существенно расширить угол обзора, сделав его близким к биологическому зрению человека, благодаря чему шлем обеспечивает необыкновенно глубокое погружение в виртуальную реальность. Данная особенность определила дальнейшую судьбу очков – проект стал одним из самых динамично развивающихся в индустрии, по всему миру стали создаваться экспериментальные приложения для Oculus Rift, а в 2014 году произошла одна из рекордных сделок в индустрии – Facebook осуществил покупку компании Oculus за $2 млрд.

Пока Oculus Rift не поступили в розничную продажу, их можно заказать на сайте разработчика за 599 долларов.

Наиболее простые мобильные шлемы виртуальной реальности представляют собой кусок картона, пару пластиковых линз и смартфон в качестве экрана.

Google Cardboard (в переводе с английского — картон) — эксперимент компании Google в области виртуальной реальности, в основе которого лежит картонный шлем, в который вставляется Android-смартфон. Смартфон разделяет картинку на стереопару и даже отслеживает положение головы.

Google Cardboard

Шлем можно собрать самому или купить за 15 долларов. На сегодня это самый распространенный шлем в мире, который был выпущен тиражом около пяти миллионов экземпляров.

Другие мобильные шлемы Cardboard в большинстве случаев производят из картона и из металла, чтобы устройство служило как можно дольше.

Кроме того, существуют мобильные шлемы виртуальной реальности из пластика с возможностью регулировать положение линз, встроенным вентилятором, кнопкой регулировки громкости и аккумулятором для подзарядки смартфона (например, Homido, Durovis Dive, Gear VR и другие).

Бинокуляры
Это изобретение больше известно, как смотровой бинокль. В отличие от стандартных конструкций в бинокуляре вместо оптической части находится механизм виртуальной реальности, который дает возможность просмотра панорамного видео с любой стороны простым поворотом устройства. Угол обзора составляет 360 градусов по вертикальной оси и 180 градусов по горизонтальной. Пространственно-звуковая картина меняется в зависимости от поворота устройства, которое может быть установлено как в помещении, так и на городских улицах.

Бинокуляр виртуальной реальности, разработанный Лабораторией мультимедийных решений

С помощью бинокуляра можно переместиться на сотни лет и увидеть реконструкции исторических объектов и событий своими глазами с эффектом полного погружения.
Интерактивность в виртуальной реальности
Не смотря на то, что просмотр объемного видео 360° в различных устройствах виртуальной реальности обеспечивает качественное погружение в видео контент, следующим шагом является возможность внедрения в видеоматериал формата видео 360° различных интерактивных элементов.

3D графика в виртуальной реальности

Такими элементами могут выступать:

Активные метки внутри виртуального пространства для движения по различным траекториям, предварительно отснятым в технологии видео 360°

Внедрение в видео 360° различного дополнительного контента (изображения, видео, гиперссылки и т.д.) – функция «картинка в картинке»

Переход из видеоизображения в формате видео 360° в смоделированное 3D-пространство реконструированной реальности.

Интерактивное взаимодействие дает возможность выбора пути следования: пользователю, в определенных точках видео (развилках), можно выбрать желаемое продолжение экскурсии, либо вернуться назад. Наведение на элемент осуществляется поворотом головы, которое отслеживается с помощью шлема виртуальной реальности. При удержании прицела на выбранном элементе в течение нескольких секунд происходит активация элемента и запускается следующий сегмент видео 360°, например, появляется видео следующего выставочного зала.

На проходах «вперед» может присутствовать экскурсовод в виде трехмерной анимации, рассказывающий об экспонатах. При желании, пользователь может пропустить просмотр отрезка видео нажатием клавиши на клавиатуре или с помощью интерактивного элемента.

Вторая форма интерактивного взаимодействия – возможность перейти из видео 360° в виртуальную трехмерную реконструкцию. В определенных точках видео-экскурсии появляется элемент, активировав который пользователь перемещается в 3D-реконструкцию с возможностью свободного перемещения в виртуальном пространстве и возможностью вернуться в исходное видео.

Примеры использования технологий виртуальной реальности в музеях
Музей Сальвадора Дали, расположенный в американском городе Сент-Питерсбурге, предлагает своим посетителям в буквальном смысле оказаться внутри картины «Археологический отголосок Анжелюса Милле», принадлежащего кисти великого испанского художника.

Виртуальная реальность в Музее Сальвадора Дали

Для создания VR-версии картины было привлечено агентство Goodby Silverstein & Partners. Художники кропотливо исследовали полотно и воссоздали его 3D-версию в мельчайших подробностях. В проекте также активно участвовали художники студии Disney, которые ранее уже сотрудничали с музеем при создании анимационного фильма Destino. Результатом их совместной работы стал проект для виртуального шлема Oculus Rift, при помощи которого любой желающий сможет оказаться внутри знаменитого полотна.

Виртуальная реальность в Музее Сальвадора Дали

С помощью приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR можно посещать самые известные художественные музеи мира, не выходя из дома. На сегодняшний день доступен тур по лондонской галерее Курто. Виртуальная прогулка сопровождается комментариями известного британского писателя, автора графических романов Нила Геймана. Идея создать такое приложение пришла в голову исполнительному директору компании Woofbert Роберту Хамви, который не смог попасть в Национальную галерею во время своего визита в Вашингтон.

Приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR

В 2016 году Лаборатория мультимедийных решений создала панорамную экскурсию для посетителей Музея истории города Мончегорска. Гости музея смогут совершить виртуальную экскурсию по цехам Кольской горно-металлургической компании и увидеть весь цикл производства цветных металлов, надев шлем виртуальной реальности и запустив специальное приложение на смартфоне.

Съемки виртуальной экскурсии по цехам Кольской ГМК

Существует множество вариантов применения виртуальной реальности в выставочной деятельности. Наша команда специалистов поможет вам в выборе лучшего решения
именно для вашего музея и поможет реализовать проект на самом высоком уровне.

Хотите проект с виртуальной реальностью?

Напишите нам!


Facebook

Мой мир

Вконтакте

Одноклассники

Google +

blog.maugry.ru

Что такое дополненная реальность? » 3D-РОЛИКИ

Знакомство

Дополненная реальность – это целая методика, позволяющая дополнять реальный мир новой информацией с помощью цифровых технологий.
Другое определение – смешанная реальность воспринимаемая с помощью добавленных компьютером элементов в текущем времени.
Ученый Рональз Азума определил в 1997 году, что технология дополненной реальности – это система, совмещающая виртуальное и настоящее, взаимодействующая в текущем времени и работающая в 3D.

Как вы можете видеть, понятие виртуальной реальности является лишь частью чего-то намного большего, чем просто аксессуара для развлечений.

Первые шаги

Для того чтобы разобраться, что такое дополненная реальность, не обязательно понимать процессы, протекающие в компьютере. Люди, для которых слова о виртуальности ничего не говорят и не разъясняют, могут вспомнить примеры из детства.
У вас в юности был принтер или компьютер? Это сейчас люди не могут представить себе жизнь без цифровых технологий, а в далёких 90-х дети писали сочинения и рефераты от руки. Кажется, где тут можно найти дополненную реальность? Рефераты в школах писались на альбомных листах А4. Кто поумней, чтобы выходило ровно, разлиновывал лист с помощью карандаша и линейки, а вот некоторым везло больше. В семьях частенько можно было встретить трафарет – лист бумаги с четко и ярко нанесёнными черными линиями. Если на него сверху положить альбомный лист, то эти линии будут видны насквозь, и человек сможет писать как по линейке. Трафарет дополнял альбомный лист строками.

А может кто-то помнит трафареты в инженерных и конструкторских бюро. Прозрачные плёнки, на которые наносятся варианты схем и чертежей, для того чтобы можно было наложить на оригинал.
В российской армии до сих пор используются стеклянные столы с двойной поверхностью и подсветкой. Между двумя плоскостями кладётся карта местности, а на верхнем прозрачном покрытии рисуются планы боевых действий. Таким образом создаётся прообраз рабочего виртуального места.

Инновации Microsoft

Разработка современных приложений не стоит на месте. У многих на слуху сейчас сведения о том, что различные компании разрабатывают очки дополненной реальности. Примером этой технологии можно назвать Microsoft HoloLens. Это современный гаджет, выполненный в виде очков, предназначенных для создания дополненной реальности. Устройство контролируется с помощью жестов или голосовых команд и позволяет управлять виртуальными объектами, создаваемыми поверх реальных, которые видны сквозь прозрачные линзы.

Во время презентации этого гаджета был устроен просмотр 3D видео, а также продемонстрирована возможность создавать трёхмерные объекты. Более того, создатели заверяют, что модели, созданные в их устройстве, можно сразу отправлять на 3D-принтер и печать.
Механизм работы этих очков не использует голограмм, а просто создаёт изображение на поверхности линз таким образом, чтобы можно было отслеживать движения глаз. По сути, вся виртуальная картинка остаётся исключительно в вашей голове. Для работы этих очков не требуются какие-либо камеры, датчики или подключение к компьютеру.

Первооткрыватели Google

Несмотря на очевидный прогресс в создании очков дополненной реальности у Майкрософт, первыми, кто создал работающий прототип, стали специалисты из Google X. Так называемые google glass были презентованы в 2012 году и должны были совмещать в себе видеодневник, дополненную реальность, мобильную связь и интернет.
Гаджет крепится на голову, он снабжен маленьким дисплеем и камерой. Управление происходит голосом по ключевому слову. Идея была реализована для людей, носящих корректирующие зрение очки дополненной реальности, таким образом, чтобы можно было заменять линзы под каждого индивидуально.

Играем в жизнь

Как ни странно, игры дополненной реальности вошли в нашу жизнь относительно давно. Разумеется, относительно создания очков. Интересный факт – индустрия развлечений всегда на шаг впереди серьёзных проектов. К сожалению, а может быть и к счастью, они не приобрели формат массового увлечения. Скорее всего, для того чтобы это произошло, необходим массовый переворот в сознании. Хотя есть вероятность, что человечество просто боится в итоге перепутать реальность и виртуальность. Приведём пару игр, использующих технологию дополненной реальности.
Real strike – это даже не игра, а просто приложение. В ней используется камера вашего смартфона. При запуске включается камера, и на картинку накладывается модель оружия. Противников нет. Так что пользователь со спокойной душой может “отстреливать” докучающих соседей, хамов на дороге, доставшего начальника. Неплохое приложение для разрядки нервов.
Одним из популярных жанров компьютерных игр является так называемый Tower Defense. Толпы озлобленных монстров, пытающихся разрушить вашу башню. Действие игры дополненной реальности AR Defender 2 происходит у вас в комнате, кабинете или классе. Точно так же, как и в предыдущем варианте, камера гаджета считывает информацию об окружающем пространстве и уже на него выводит изображение. Продвинутый движок приложения абсолютно четко воспринимает неровности поверхности, что обеспечивает еще более высокий уровень погружения.
Хороший способ провести перерыв на работе – это сыграть в виртуальный баскетбол. Приложение AR Basketball, позволяет создавать образ баскетбольной корзины на том месте, куда прикреплён специальный QR код. Вы можете распечатать его и поместить на любую поверхность, хоть просто на стену, хоть на кружку с кофе.

Не до игр

Если вы являетесь серьёзным человеком, считающим, что играм не место в нашей жизни вообще, то существуют приложения дополненной реальности для служебной деятельности. Тысячи программ и утилит, позволяющих сделать хороший маркетинговый ход.
Как вам идея установить в магазине одежды в примерочных системы дополненной реальности так, чтобы посетители не брали вещи с вешалок, а просто примеряли их на компьютере?
Или проходившая акция канала National Geographic, приобщавшая людей к миру дикой природы без выезда за пределы города.
Возможность создавать в приложении 3D проект здания, с переносом с места на место без особых проблем.
Если вы заядлый турист, то браузеры дополненной реальности помогут вам отыскать любую необходимую информацию по месту, где вы находитесь, или найти дорогу, если заблудились.

Своими руками

Если вы практикующий программист и вас интересует дополненная реальность, как сделать её самому, подскажет Swarp SDK. Разработанный российскими программистами продукт служит для создания приложения дополненной реальности в “домашних” условиях. Поскольку программирование является сложным творческим процессом, вникать в тонкости сего действия не будем, а просто опишем общий интерфейс программного обеспечения.
Bin – директория, в которой находятся все библиотеки Swarp SDK, а также движок управления Mogre.
Docs – тут хранится вся документация, лицензионное соглашение, а также FAQ пользователя.
Examples – тут собраны примеры, созданные разработчиками Swarp SDK.
Trackable – здесь есть несколько готовых маркеров, необходимых для размещения виртуального объекта в реальности.
Utilites – существует 3 встроенных утилиты, две из которых служат для просмотра лицензии и общих сведений о приложении, а вот третья создаёт маркеры для объектов дополненной реальности.
С помощью этого программного обеспечения создаётся дополненная реальность, программы, её использующие, а также коды, необходимые для реализации виртуальности в реальной жизни.

Примеры

Дополненная реальность уже прочно вошла в повседневность многих людей. Если не считать компьютерные технологии и гаджеты, то человечество использует ее для решения самых разных задач.
В современных боевых самолётах и вертолётах с помощью систем дополненной реальности реализуется индикаторная панель, режим прицеливания, в общем всё, что можно просто и быстро посмотреть, не отвлекаясь на остальную приборную доску.

В полиграфии дополненная реальность используется также в достаточно больших объёмах. В различных журналах, газетах, путеводителях или картах помещаются специальные коды, которые необходимо считывать особыми браузерами, предназначенными для их просмотра. В таких отметках может находиться абсолютно любой цифровой контент – текст, видео, изображения или даже музыка.
Дополненная реальность на андроид-платформе реализуется в виде игровых и развлекательных приложений.
В медицине также используется эта технология. Например, для локализации опухоли в каком-либо органе проводят сканирование, а затем накладывают результат на модель пораженного органа, таким образом сохранив больше здоровой ткани. Дополненная реальность уже сейчас спасает тысячи жизней. Даже несмотря на то, что находится ещё в зачаточном состоянии.

Будущее

Технология дополненной реальности всё глубже проникает в нашу жизнь. Уровень распространения кибертехнологий и их интеграции в сферу жизнедеятельности человечества настолько высок, что в скором времени нам могут не потребоваться многие привычные сейчас вещи. Несмотря на то, что приложения дополненной реальности сейчас не очень популярны, возможно, из-за того, что требуют от человека хоть каких-то действий – выйти на улицу, пошевелиться. Сложно сказать, что станет с человечеством в ближайшее время благодаря этим технологиям. Мы можем либо полностью атрофироваться, сидя за компьютерами, либо шагнуть в новый мир, полный интереснейших событий, технологий, аттракционов… то есть заиграться, полностью погрузившись в виртуальность.
Источник: fb.ru

3d-roliki.ru

Найдите отличия: видео 360 и VR, AR, MR реальности, стереоскопическое и 3D видео, 3DOF и 6DOF

В первой части статьи были рассмотрены яркие примеры использования AR в телевидении и перспективы развития VR. Вторая часть будет интересна для тех, кто хочет копнуть глубже и разобраться в деталях, не будучи специалистом в сфере. Ведь если говорить о виртуальной реальности, встречается много малознакомых или незнакомых понятий и терминов.

Иногда различные типы видео и опыта путают между собой, принимая за VR стереоскопическое видео 360. Путаница происходит тогда, когда виртуальная реальность построена на основе реальных съемок и изображений, или наоборот, когда видео 360 делают на основе выдуманного мира: например, в мире компьютерной игры «устанавливают» виртуальную камеру с 360-градусным обзором, и затем записывают сам процесс игры. Кажется, что вы в виртуальной реальности, но все же это видео 360.
Сбиться столку можно и при просмотре дополненной реальности (Augmented reality), которую путают с виртуальной и смешанной (Mixed Reality). Конечно, многие скажут: «Это же очевидно! Совсем разные вещи!». Скорее всего таких профи статья не удивит. Но попытать счастья стоит.


Часть 2

Краткое содержание:

  • Степени свободы 3DOF и 6DOF: круг обзора человека и возможность двигаться в пространстве

Для понимания разницы опыта просмотра в различных технологиях, мы должны выяснить, какие возможности наблюдения нам предоставляют: можем ли мы только поворачивать голову влево/вправо, вверх/вниз или также передвигаться в пространстве, не теряя картинку. Все это включено в понятие степени свободы (Degrees of Freedom).

  • Как мы видим мир всегда: понятия окклюзии, параллакса движения и стереоскопичности
  • Как мы видим мир в гарнитуре 3DOF и 6DOF
  • Видео 360 VR
  • Стереоскопическое видео/изображение  3D
  • Разница между VR, AR, MR – виртуальной, дополненной, смешанной реальностями
  • Особенности производства. Преимущества и недостатки VR и видео 360

Cтепени свободы 3DOF и 6DOF

DOF (Degrees Of Freedom, степени свободы) – это количество направлений, в которых объект может перемещаться/вращаться в трехмерном пространстве. Гарнитура для VR в формате 3DOF может отслеживать ориентацию вашей головы, зная куда вы смотрите. Получаем три оси вращения: качание головой (yaw), поворот/наклон влево и вправо (roll) и наклон вперед/назад (pitch). Гарнитуры с шестью степенями свободами 6DOF будут отслеживать и ориентацию, и положение, получая информацию куда вы смотрите, а также где вы находитесь в пространстве.  Такое отслеживание называют позиционным.

ВЫВОД: если вы можете только вращать головой на 360 градусов, наклонять ее вперед и назад, но не можете прыгать в стороны или спускаться/подниматься по лестнице, у вас есть только 3 степени свободы – 3DOF. Именно такая свобода и предполагается при просмотре видео 360.

Реализовать 3DOF легче, так как вращение относительно легко определить и отслеживать даже с помощью большинства телефонов. Они имеют необходимое оборудование – датчики акселерометра и гироскопа.

Для полноценной виртуальной реальности необходимы все шесть степеней свободы, следовательно – позиционное отслеживание. C позиционным отслеживанием, необходимым для 6DOF, все сложнее. Для просмотра такого виртуального контента необходима гарнитура, которая сможет точно с высокой чувствительностью отслеживать ваше положение. Большинство автономных/мобильных VR-гарнитур на рынке на данный момент 3DOF. Фактически, только в первые месяцы 2018-го на рынок стали выходить 6DOF автономные гарнитуры (для интересующихся –  Vive Focus, Oculus Santa Cruz и Pico Neo).

Для того, чтобы лучше разобраться, как создаются новые выдуманные миры, следует вспомнить или узнать, как мы воспринимаем мир реальный.

Как мы видим мир всегда

Благодаря чему мы видим мир? При помощи света, цвета, получения объемного изображения и движения объектов. Человек (в здоровом состоянии) обладает способностью бинокулярного и стереоскопического зрения. Бинокулярность –  способность одновременно чётко видеть изображение предмета обоими глазами. Не всегда бинокулярность означает способность видеть в стерео. Так, например, у хамелеона глаза управляются мозгом независимо друг от друга.  Благодаря этому он наблюдает за разными объектами разными глазами независимо. У человека же при стереоскопическом зрении в мозгу формируется объёмное изображение объекта.

Итак, люди и некоторые животные анализируют глубину изображения и расстояние по нескольким признакам.

Окклюзия и параллакс движения. Я выбрала эти признаки, так как мы сильно на них полагаемся. И, чего уж греха таить, так как до работы над статьей я не смогла бы ответить, что они собой представляют.

Окклюзия – это признак, который обеспечивает нам эффект глубины, когда один наблюдаемый предмет частично закрывает другой. На иллюстрации несмотря на то, что большая часть белого треугольника отсутствует, зрительная система «достраивает» изображение, чтобы воссоздать общую структуру, причем одновременно возникает иллюзия удаленности треугольника от трех кругов.

Параллакс движения – это кажущееся относительное смещение близких и более далеких предметов. Например, если наблюдатель будет двигать головой влево и вправо или вверх и вниз. Самый простой пример – поднимите большой палец руки перед собой и взгляните на него сначала правым, а потом левым глазом. Другой пример – явления, наблюдаемые через боковое стекло быстро движущегося автомобиля. Наблюдателю кажется, что объекты, расположенные выше точки, на которой он зафиксировал взгляд, движутся в направлении движения автомобиля. Напротив, объекты, расположенные ниже точки фиксации, движутся в противоположном движению автомобиля направлении.

При восприятии объектов каждый глаз видит двумерное изображение. Оба изображения проецируются на сетчатку с небольшим различием. Именно это различие вместе с другими признаками дает восприятие глубины – стереоскопичность. Несмотря на то, что изображение предметов на сетчатках глаз двумерное, человек видит мир трехмерным, то есть он может воспринимать глубины пространства стереоскопическим зрением. Оцените важность этого явления для координации движений и восприятия пространства, закрыв один глаз и попытавшись вдеть нитку в иголку.

Обогатившись базой терминов, вернемся к VR.

Как мы видим мир с гарнитурой 3DOF, 6DOF

Человек с гарнитурой 6DOF VR может свободно и естественным образом перемещаться в виртуальном пространстве. Все происходит так же, как в реальном мире. Вы можете смотреть на объекты под разными углами, вы можете наклоняться над или под ними, обходить объекты. Все натурально, так как есть все необходимые признаки для вашего зрения.

С гарнитурой 3DOF у вас отбирают некоторые из ваших способностей. Вы можете смотреть вокруг, но как будто приклеены к одной точке.  И все бы ничего, если бы вы были неподвижны в ногах. Но даже когда мы неподвижны, например, сидим, мы совершаем движения головы, что создают тот же эффект параллакса, упомянутый выше.  В 3DOF представьте, что к вашей голове приклеили весь мир и он двигается вместе с вами. Все объекты будут находиться на одном расстоянии от ваших глаз.

Неестественный способ взгляда на мир с гарнитурой 3DOF иногда создает не очень благоприятное влияние на человека. Некоторые не заметят его вовсе, у других может возникнуть головокружение, усталость глаз или просто общий дискомфорт. Играет роль и длительность сеанса. Большинство мобильных VR-сеансов исчисляются в минутах. Этого недостаточно для того, чтобы вызвать симптомы для большинства людей. Однако, поскольку индустрия VR развивается, будут появляться игры/приложения, в которых эта проблема может стать более острой.

Видео 360 ≠ VR

Видео 360 иногда по ошибке включают в категорию VR. Такую ошибку допускают, как правило, так как видео 360 можно просматривать в гарнитуре виртуальной реальности. Но нелепо утверждать так только из-за используемого инструмента, так как это все равно что утверждать: «Я сижу в машине, значит я должно быть еду».

Видео 360 можно просматривать по-разному. Например, на телефоне в ленте Facebook, используя свой палец, чтобы проскроллить и получить перспективу на 360 градусов. Можно смотреть и на Youtube, с помощью мышки прокручивая видео.

Даже если вы будете смотреть в гарнитуре VR, при наличии качественных ощущений вам не будет хватать звука и полной свободы действий, которую может обеспечить истинный 6DOF VR. Нет возможности взаимодействовать с тем, что вас окружает. Видео 360 имеет три степени свободы = 3DOF. Ощущение полного присутствия не сможет обеспечить ни видео 360, ни стереоскопическое видео, ни 3D.

Теперь рассмотрим разницу стереоскопического видео и настоящего 3D.

Стереоскопическое видео/изображение  3D

Про стереоскопическое зрение мы уже поговорили. Теперь разберемся, действительно ли нам предоставляют видео 3D как обещают. Понятие 3D используются повсюду: 3D фильмы, 3D дисплеи и т.д. В большинстве случаев все это стереоскопический контент, а не настоящий 3D.

Cтереоскопические изображение или видео – те, что сняты с двух углов, подражая нашему зрению, нашим глазам.

3D означает, что у нас есть достаточно информации про объект, чтобы рассматривать его с любого угла обзора. Так как вместо длинного понятия «стереоскопическое видео» было проще использовать термин 3D, последний сразу же «прижился».

В последнее время появляются действительно 3D или volumetric (объемные) видео, поэтому различать эти термины.

Пример такого видео можно посмотреть здесь (CES 2017):

Пример volumetric video

На демо участники могут не только свободно перемещаться, но и видеть абсолютно все детали объекта, куда ни заглянут. Такие технологии на сегодняшний момент безумно дороги (стоимость камеры $ 250 тыс. и выше), а итоговые размеры файлов составляют около 3 терабайт/минута. Так что придется подождать десяток лет, чтобы эти новшества стали более доступны.

СДЕЛАЕМ ВЫВОД: в каких случаях мы смотрим видео 360, а в каких VR.

Видим ВИДЕО 360, если это:

– реальная моноскопическая съемка (объекты не объемные, нет стереоэффекта), мы можем только поворачивать голову на 360 градусов.

– реальная стереоскопическая/объемная съемка (запись видео с нескольких углов, что дает стереоэффект), которую можно смотреть в гарнитуре для VR и видеть почти реальную картинку, но это по-прежнему видео 360 без свободы передвижения

– искусственная картинка/анимация, созданные компьютером, но просматриваются только как запись. В данном случае вы можете быть только зрителем, который смотрит фильм/компьютерную игру/анимацию с конечной длительностью. Есть свобода только крутить головой (или использовать повороты гаджета), оглядываясь по сторонам, не взаимодействуя ни с чем. Например:

Если при просмотре вы являетесь только зрителем – это видео 360.

Видим VR, если это:

– искусственный не реальный мир и анимация, с полной свободой передвижения и неограниченным временем участия

– реальные съемки с добавлением 3D графики с полной свободой передвижения и времени в отличии от видео 360. Это может быть стереоскопическое или истинное 3D видео.

Если вы видите реальные съемки или полностью созданный компьютером мир, можете не только вращать головой, но и свободно передвигаться в пространстве, и вы не ограничены по времени – это VR.

Различия VR/AR/MR – виртуальная,
дополненная, смешанная

Определиться в этих трех видах можно довольно просто, ответив на несколько вопросов:

  • Если, одевая специальную гарнитуру, вы уже не видите ваше реальное окружение, в котором вы в данный момент находитесь, перед вами – VR. Если вы даже при использовании гарнитуры, остаетесь в том же помещении, на той же улица и т.п., значит перед вами AR либо MR.
  • Разницу между двумя последними реальностями можно понять, обратив внимание, как размещается цифровой объект в пространстве (анимированная овечка, робот, зомби и что-любо другое, с чем вам посчастливилось столкнуться). Ключевой момент заключается в том, что цифровой контент не прикреплен к пространству. То-есть, если виртуальный объект парит в воздухе, это значит, что он из дополненной реальности. Дополненная реальность не меняет окружение человека, а лишь привносит в него искусственные элементы.

В MR же есть привязка к положению в реальном мире. В этом случае в мир добавляются виртуальные предметы, которые прикреплены к своему месту в пространстве для того, чтобы вы воспринимали их как реальные.

Подсуммируем:

AR – «живая» реальность вокруг вас с «наклеиванием» графики поверх вашего настоящего мира

MR-«живая» реальность вокруг вас с внедрением графики в ваш настоящий мир, т.е. объекты уже не наклеиваются поверх вашей картинки, а расставляются в реальном мире.

ВЫВОД: Если вы находитесь в своем реальном мире, вы в AR или MR. Если анимированные объекты или графика не учитывают положение объектов в пространстве, висят в воздухе или у кого-то на голове – это AR. Если же они вдруг прячутся за мебель, прыгают на нее – вы в MR.

Рассмотрев разные виды контента, кратко рассмотрим особенности производства.

Особенности производства.
Преимущества и недостатки
VR и видео 360

Среди преимуществ видео 360, однозначно, более легкое и дешевое производство и доступность гаджетов, необходимых для просмотра. Среди недостатков – низкое разрешение. Формата 4К недостаточно для производства четкого изображения, когда его необходимо растянуть, чтобы покрыть 360 градусов. Требуется 8К или даже 16К форматы, что затрудняет процесс съемки, монтажа и проигрывания. Вдобавок, видео, как правило, 30 или 60 кадров в секунду. Для сравнения, для VR необходимо минимум 90 кадров в секунду, в противном случае у зрителя может возникать боль в глазах или головокружение.

Видео 360 трудно редактировать после того как все отснято. Можно сделать цветокоррекцию или поменять текстуру 3D модели в несколько кликов. Исправлять же видео затруднительно и дорого. В итоге, видео можно относительно дешево снять, но в долгой перспективе процесс может подняться в стоимости.

Стереоскопическое видео 360 так же имеет ряд проблем: стереоэффект будет удачным и естественным только, если дистанция между двумя камерами совпадает с фактической дистанцией между вашими глазами – межзрачковым расстоянием (IPD – the interpupillary distance).

Даже если вам повезет иметь IPD, который соответствует настройке стереоскопической камеры, видео 360 по-прежнему может казаться странным, а масштаб часто ошибочным. Это связано с тем, что стереоскопический эффект возможен только при определенных углах обзора, когда вы смотрите в том же направлении, что и физические линзы на фотоаппарате. При сведении стереоскопического изображения с нескольких камер погрешности неизбежны.

В производстве VR основными преградами остаются два момента:

  • Для производителей сложный, трудоемкий и затратный процесс создания идеального изображения для максимального погружения в виртуальную реальность
  • Для пользователей это недоступность либо заоблачные цены на необходимые гаджеты. Т.е. даже при условии создании сказочного виртуального мира донести его до широкой публики в исходном качестве на данный момент невероятно сложно.

В заключении хочется сказать, что в виртуальный мир хочется погружаться все глубже и глубже.  Чем больше вдаешься в детали, тем больше понимаешь, какими темпами мчится развитие. И мы не всегда знаем, в каком направлении будут следующие шаги. Возможно, скоро будут другие виды реальностей. А может, вскоре понятие реальности станет относительным.

Следите за новинками и создавайте свои!

 

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилось нас читать?
Подпишись тут

mediasat.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *