Схема строение лампы накаливания – Устройство лампы накаливания | Сайт электрика

Содержание

Устройство лампы накаливания | Сайт электрика

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство лампы накаливания. Но для начала хотелось бы сказать пару слов об истории этой лампы.

Самую первую лампочку накаливания придумал английский учёный Деларю ещё в 1840 году. Она была с платиновой спиралью. Немного позже, в 1854 году, немецкий учёный Генрих Гёбель представил лампу с бамбуковой нитью, которая находилась в вакуумной колбе. В то время ещё очень много было представленных различных ламп, различными учёными. Но все они имели очень короткий срок службы, и были не эффективными.

В 1890 году учёный Лодыгин А. Н. впервые представил лампу, у которой нить накаливания была из вольфрама, и имела вид спирали. Так же этот учёный делал попытки откачивания из колбы воздуха, и заполнение её газами. Что значительно увеличивало срок службы ламп.

А вот серийное производство ламп накаливания началось уже в 20 веке. Тогда это был реальный прорыв в технологии. Сейчас же, в наше время, многие предприятия, и просто обычные люди отказываются от этих ламп из-за того, что они много потребляют электроэнергии. А в некоторых странах даже запретили выпускать лампы накаливания, мощностью которых более 60 Ватт.

Устройство лампы накаливания.

Такая лампа состоит из следующих деталей: цоколь, колба, электроды, крючки для держания нити накаливания, нить накаливания, штенгель, изолирующий материал, контактная поверхность.

Для того, чтобы вам было более понятно, я сейчас напишу про каждую деталь отдельно. Так же смотрите рисунок и видео.

Колба – изготавливается из обычного стекла и нужна для защиты нити накаливания от внешней среды. В неё вставляется штенгель с электродами и крючками, которые держат саму нить. В колбе специально создаётся вакуум, или она заполняется специальным газом. Обычно это аргон, так как он не поддается нагреванию.

С той стороны, где находятся вывода электродов, колба заплавляется стеклом и приклеивается к цоколю.

Цоколь нужен для того, чтобы лампочку можно было вкрутить в патрон. Обычно он изготовляется из алюминия.

Нить накаливания – деталь, которая излучает свет. Изготавливается в основном из вольфрама.

А теперь для закрепления своих знаний, предлагаю вам посмотреть очень интересное видео, в котором рассказывается, и показывается, как делаются лампы накаливания.

Принцип действия.

Принцип действия лампы накаливание основывается на нагревании материала. Ведь не зря нить накаливания имеет такое название. Если пропустить через лампочку электрический ток, то вольфрамовая нить накаляется до очень высокой температуры и начинает излучать световой поток.

Не расплавляется нить, потому что вольфрам имеет очень высокую температуру плавления, где-то 3200—3400 градусов Цельсия. А при работе лампы нить накаляется где-то до 2600—3000 градусов Цельсия.

Преимущества и недостатки ламп накаливания.

Основные преимущества:

Не высокая цена.

Небольшие габариты.

Легко переносят перепады напряжения в сети.

При включении мгновенно зажигается.

Для человеческого глаза практически незаметно мерцание при работе от источника переменного тока.

Можно использовать устройство для регулировки яркости.

Можно использовать как при низких, так и при высоких температурах окружающей среды.

Такие лампы можно выпускать практически на любое напряжение.

В своём составе не содержит опасных веществ, и поэтому не нуждается в специальной утилизации.

Для зажигания лампы не нужно никаких устройств запуска.

Может работать на переменном и на постоянном напряжении.

Работает очень тихо и не создаёт радиопомех.

И это далеко не полный список преимуществ.

Недостатки:

Имеет очень маленький срок службы.

Очень маленький КПД. Обычно он не превышает 5 процентов.

Световой поток и срок службы напрямую зависит от напряжения сети.

Корпус лампы при работе очень сильно нагревается. Поэтому такая лампа считается пожароопасной.

При разрыве нити колба может взорваться.

Очень хрупкая, и чувствительная к ударам.

В условиях вибрации очень быстро выходит со строя.

И в заключение статьи хотелось бы написать об одном удивительном факте. В США в одной из пожарных частей города Ливермор, есть лампа мощностью 60 ватт, которая светиться беспрерывно уже более 100 лет. Её зажгли ещё в 1901 году, а в 1972 году её занесли в Книгу рекордов Гинесса.

Секрет её долговечности в том, что она работает в глубоком недокале. Кстати, работу этой лампы беспрерывно фиксирует вебкамера. Так что кому интересно можете поискать прямую трансляцию в интернете.

На этом у меня всё. Если статья была вам полезной, то поделитесь неё со своими друзьями в социальных сетях и подписывайтесь на обновления. Пока.

С уважением Александр!

Читайте также статьи:

fazanet.ru

особенности электрической конструкции, характеристики, принцип действия

Если сравнивать с другими источниками света, лампа накаливания является очень простой конструкцией. Генерация светового потока происходит с помощью вольфрамовой нити, которая располагается внутри вакуумной стеклянной колбы. Для увеличения эксплуатационного срока в нее начали добавлять смесь специальных газов. Это стало началом возникновения галогеновых ламп. Первыми осветительными приборами считаются калильные конструкции.

История создания

В устройстве лампы накаливания сначала применяли не вольфрам, а совершенно другие материалы. Среди них была даже бумага и бамбук. Сейчас все лавры принадлежат Эдисону и Лодыгину. Они изобрели и усовершенствовали электрические лампы. Но всё же все заслуги приписывать им будет не совсем правильно.

Учёные прилагали усилия в таких направлениях:

  • Поиск наиболее подходящего материала, который можно использовать в качестве нити накаливания. Необходимо было найти то, что отлично противостояло бы возгоранию, а также имело большие показатели сопротивления. Раньше строение лампочки предполагало применение волокон бамбука в качестве нити накаливания. Эту нить покрывали очень тонким слоем графита, который выполнял роль токопроводящей среды. Конструкция работала, но изделия быстро перегорали.
  • Дальше изобретатели думали над тем, как выкачать весь воздух из колбы. Это было необходимо, потому что кислород является важнейшим веществом при горении. Поэтому необходимо, чтобы был вакуум (отсутствовал воздух).
  • Далее нужно было придумать разъёмные и контактные элементы цепи. Задача была довольно трудной. На это в значительной мере повлиял слой графита, который имеет очень высокое сопротивление. Исследователям пришлось прибегнуть к применению драгоценных металлов — платины и серебра. Это позволило увеличить проводимость тока, но конечная цена лампочки стала запредельной.
  • Е27 — цоколь Эдисона. Такая резьба применяется и по сегодняшний день. Первые варианты соединения изделия с электрической сетью предполагали применение пайки. Сегодня такой вариант не позволил бы быстро менять лампочки. Также это соединение очень быстро распадалось, когда происходил быстрый и сильный нагрев.

На сегодняшний день популярность таких устройств очень быстро падает. Сейчас в России увеличена амплитуда напряжение на 10%, если сравнивать с началом 2000-х годов. Это привело к тому, что лампы накаливания стали перегорать в 4 раза быстрее. Сейчас постепенно все переходят на светодиоды.

Принцип работы

Принцип работы лампы накаливания заключается в сильнейшем разогреве вольфрамовой нити. Это происходит благодаря электрическому току, проходящему через неё. Чтобы твёрдое вещество начало издавать красное свечение, его придётся разогреть до 570 градусов по Цельсию. Этот свет будет приятен для человеческого глаза, только если повысить показатель минимум в 3 раза.

Такую термоустойчивость имеют далеко не многие материалы. Из-за доступности вольфрама, его начали применять для изготовления ламп. Плавится он при температуре 3400 градусов по Цельсию. Его начали закручивать в спираль для повышения длины и площади этого изделия. Это помогает в значительной мере увеличить световое излучение.

Обычные лампочки устроены так, что главные части могут разогреваться до 2800 градусов. Работают лампы накаливания с цветовым излучением в 2000−3000 К. Это позволяет получить жёлтый спектр. Его, конечно, нельзя сопоставить с дневным, но этот цвет не оказывает пагубного влияния на зрение.

Если вольфрам попадёт в воздушную среду, то он очень быстро окислится, что приведёт к мгновенному разрушению. Именно поэтому использовали вакуумную колбу. Сейчас применяют вместо вакуума, смесь газов. На этапе экспериментов учёные ещё не знали, какой состав лучше применить. Современные изделия наполняются азотом, криптоном или же аргоном. С их помощью удалось увеличить срок эксплуатации лампы, а также повысить силу свечения. Длительность использования становится больше из-за того, что давление газов внутри колбы не даёт испаряться вольфрамовой нити, когда она нагрета.

Строение изделия

Обычные виды ламп накала состоят из стандартных элементов. Их размеры могут отличаться (самыми большими являются промышленные типы), но в целом они абсолютно одинаковые. Основные составные части конструкции:

  • Колба.
  • Цоколь. Он состоит из корпуса, на котором установлен изолятор и контакт.
  • Вакуум или смесь газов.
  • Нить накала.
  • Предохранитель.
  • Ножка.
  • Электроды. Через них подаётся электричество на нить.
  • Крючки. Предназначены для поддержания элемента накаливания.

Кроме стандартных типов конструктивных решений, есть ещё и изделия специального назначения. В них могут применяться держатели, которые заменяют цоколь. Также добавляется дополнительная стеклянная колба.

Чаще всего предохранитель делают из феррита и никеля. Он располагается в разрыве на каком-либо из выводов тока. Обычно его размещают в ножке. Делается это из-за того, что во время обрыва сети возникает электрическая дуга. Она расплавляет проводник, который попадает на стекло. В этом случае лампа может взорваться.

Колба и цоколь

Стеклянный сосуд необходим, чтобы защитить нить накаливания от воздействия кислорода, что приведёт к её разрушению. Размеры колбы выбираются исходя из скорости оседания вещества, из которого выполнен проводник.

Наиболее распространённым цоколем является модель Томаса Эдисона. Е10 — это самый маленький резьбовой контакт, который сейчас применяется. Например, он может использоваться в ёлочных гирляндах, а также в небольших фонариках.

Цоколь Е14 называют миньоном. Зачастую его используют в небольших осветительных приборах по типу бра. Также эта модель применяется в современных люстрах. Даже светодиодные лампы используют этот тип контакта.

Под этот патрон изготавливается множество видов ламп:

  • грушевидная;
  • каплевидная;
  • зеркальная;
  • шарообразная;
  • свечеобразная.

Цоколь Е27 — это самый распространённый тип контакта. Его применяют для стандартных патронов, которые есть в каждом доме и любом помещении. Светодиодные светильники с таким цоколем очень сильно напоминают обычные.

Газовая среда и нить накала

Раньше все осветительные изделия были вакуумными. Сейчас это решение используют только для маломощных ламп. Более мощные источники света наполняют инертным газом. Он напрямую влияет на количество излучаемого тепла.

В галогеновые изделия закачивают галогены. Вещество, покрывающие всю спираль накала, при нагреве постепенно испаряется. Оно вступает в реакцию с галогенами, расположенными внутри колбы. После этого начинают появляться соединения, которые снова разлагаются, что влечёт за собой возвращение вещества на нить. Это позволяет значительно увеличить температуру спирали, чтобы повысить КПД и длительность эксплуатации. Также газы позволяют сделать стеклянные ёмкости не такими большими.

Нить накала выполняется в разной форме. Предпочтение отдают исходя из специфики лампочки. Чаще всего используют проводник с круглым сечением или спираль. Очень редко применяют ленточные нити.

Современные лампы функционирует благодаря вольфраму или сплаву из осмия и вольфрама. Иногда используют биспирали и триспирали. Это возможно только благодаря повторному закручиванию. Наибольший коэффициент полезного действия наблюдается у последнего типа, потому что триспираль позволяет снизить количество теплового излучения.

Технические характеристики

Лампы накаливания имеют разную мощность, от которой зависит световая энергия. Изменения происходят не линейно. До 75 Вт светоотдача повышается, а свыше этого показателя — начинает снижаться. Основным преимуществом ламп с нитью является распределение светового излучения во все стороны в одинаковом количестве.

Такие изделия выдают пульсирующий свет. Определённые значения обычно сильно нагружают глаза. Нормальным показателем коэффициента пульсации является 10% и менее. Лампы не превышают порог в 4%. Наихудший показатель наблюдается у 40 Вт.

Среди всех изделий, которые выделяют световое излучение, лампы накаливания разогреваются больше остальных. Огромная доля электрического тока преобразуется в тепло, поэтому лампа зачастую похожа на обогреватель, а не на прибор освещения. Именно это стало причиной, что в законодательстве появился специальный пункт. Он запрещает использовать лампочки в быту, мощность которых превышает 100 Вт.

Если рассматривать излучаемый спектр, то можно увидеть, что обычные лампы содержат много красного цвета и мало синего при сравнении с естественным освещением. Но результат всё равно считается довольно приемлемым, так как он не становится причиной утомления глаз.

Для правильного использования осветительных приборов нужно знать условия их применения. Предельные температурные показатели составляют -60 и +50 градусов по Цельсию. Максимальная влажность — 98%. Такие устройства могут работать в паре с диммерами. Они необходимы, чтобы изменять светоотдачу путём регулирования интенсивности света. Эти изделия являются довольно дешёвыми. Также их очень просто заменить даже человеку, не имеющему никакой квалификации.

Коэффициент полезного действия

В результате применения электрического тока для работы ламп с нитью накаливания образуется не только тепловая энергия и видимый для человеческих органов зрения свет, но и инфракрасный свет, который не видят глаза. При температуре вольфрамовой нити в 3350 К коэффициент полезного действия лампочки составляет 15%. Если взять обычное изделие в 60 Вт при температуре 2800 К, то такое устройство будет выдавать минимальный КПД — 5%.

Чем сильнее разогрет проводник, тем выше будет коэффициент полезного действия. Но при большом нагреве вольфрамовой нити заметно снижается срок эксплуатации. Например, если температура лампы составляет 2800 К, то она будет работать около 1000 часов, а если 3400 К, то в несколько раз меньше. Можно увеличить напряжение на 20%, чтобы повысить выделение световой энергии в 2 раза. Но это будет не очень рационально, так как срок эксплуатации уменьшится на 95%.

Увеличение срока эксплуатации

Об увеличении срока эксплуатации обычных ламп хотят узнать побольше практически всё, кто ещё не перешёл на более современное светодиодное освещение. Это важно, так как иногда лампочка может перегореть даже при первом включении.

Существует несколько причин, из-за которых может значительно снизиться срок использования этих устройств. Вот основные из них:

  • Частые скачки напряжения в электрической сети. Слишком большая нагрузка уменьшает время эксплуатации.
  • Механические вибрации.
  • Замыкания или разрыв цепи в проводке квартиры.
  • Слишком большая температура окружающей среды.

Нужно придерживаться рекомендаций, чтобы лампочка проработала более длительный срок. Даже выполнение самых общих указаний может значительно продлить срок эксплуатации. Основные советы:

  • Выбирать следует только те изделия, которые полностью подходят для рабочего диапазона напряжений электрической сети.
  • Вкручивать и выкручивать лампочку можно только тогда, когда выключатель находится в выключенном состоянии. Это обусловлено тем, что даже самые незначительные вибрации способны вывести источник освещения из строя.
  • Если лампы всё время перегорают только в одном и том же месте, то следует заменить патрон или починить его.
  • Когда эксплуатация происходит в подъезде на лестничной площадке, следует к электрической цепи добавить диод для выпрямления напряжения. Необходимо параллельно подключить две лампы, имеющие одинаковую мощность.
  • К выключателю можно подсоединить устройство, которое будет плавно увеличивать подачу тока на лампу во время включения.

Технологии постоянно развиваются. Сейчас всё большую популярность набирают экономичные люминесцентные и светодиодные лампы. Основными причинами продолжения производства ламп накаливания являются налаженное производство и наличие слаборазвитых стран, если смотреть с технологической точки зрения. Также они имеют очень мягкий и комфортный свет.

rusenergetics.ru

Устройство лампы накаливания

Устройство лампы накаливания


1 — Полость колбы
2 — Колба
3 — Держатель нити накала
4 — Токовый ввод
5 — Нить накаливания
6 — Токовый ввод
7- Ножка
8 — Предохранитель
9 – Цоколь лампы накаливания
10 — Контакт цоколя
11 — Изолятор цоколя

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Устройство лампы накаливания различно, для ламп различного назначения. Лампы могут быть с цоколем и без, с различным видом цоколя лампы накаливания. Обязательная часть лампы – это нить накала лампы и электроды. Бывает. что в лампу накаливания добавляется проволочный предохранитель, включается к одному из ее выводов. При перегорании лампы возрастает ток, может произойти расплав нити накала, расплавленный металл может колбу расплавить, что может стать причиной возгорания.


Колба необходима для защиты нити накала от кислорода, при нагреве вольфрам вступает в реакцию с кислородом воздуха. В зависимости от мощности лампы выбирают колбу, при нагреве молекулы вольфрама отделяются и собираются на внутренней части колбы, при большей мощности необходима большая поверхность для осаждения вольфрама.


Цоколи ламп накаливания стандартизированы, чаще встречаются Е27, Е40. Эдисон первый создал резьбовой цоколь. Также встречаются лампы, удерживающиеся за счет трения, бывают лампы и безцокольные.


Нить накала изготавливалась ранее из угля, теперь из вольфрама или вольфрамо-осмиевого сплава, т.е. из тугоплавких материалов. Нить изготавливают тонкой (около 50 микрон) и т.к. длинна ее должна быть довольно большой (длина и толщина получается исходя из закона ома и требуемой мощности лампы накаливания), ее закручивают в виде спирали, дойной, или тройной спирали. Формулы необходимые для расчета мощности лампы накаливания и ее зависимости от параметров нити накаливания I=U/R и мощность по формуле P=U•I , или P=U²/R.
Практически вся энергия в лампе накаливания преобразуется в излучение, однако большая часть излучения лежит в невидимом для глаза спектре ИК и воспринимается как тепло.


При температуре 3400К, коэффициент полезного действия максимален – 15%, при температуре 2700К коэффициент полезного действия – 5%, это для лампы накаливания 60вт. При 3400К время горения лампы несколько часов, при 2700К порядка 1000 часов. Необходимо выбрать баланс между КПД и временем горения лампы. Самая большая опасность для лампы – разное испарение металла с разных частей нити накаливания, что приводит к «слабым местам», где нить и рвется. Преимущественно под действием пускового тока. При мощности лампы накаливания 100В, затраты на пуск составляют киловатт. Для предохранения ламп используются различные устройства для постепенного выхода на рабочий режим.

electrolights.ru

Лампа накаливания: конструкция и особенности

Лампа накаливания – электрический осветительный прибор, принцип действия обусловлен нагревом до высоких температур нити тугоплавкого металла. Тепловой эффект тока известен давно (1800 год). С течением времени вызывает сильный нагрев (выше 500 градусов Цельсия), заставляя нить светиться. В стране вещички носят имя Ильича, на деле продвинутые историки бессильны однозначно дать ответ, кого назвать изобретателем лампы накаливания.

Конструкция ламп накаливания

Изучим строение прибора:

  • Рабочей частью лампы накаливания выступает вольфрамовая нить. Удельное сопротивление металла в три раза выше меди. Невысокий показатель. Вольфрам выбран разогреваемым телом за тугоплавкость, сечение нити уменьшено до предела, повышая электрическое сопротивление. Температура таяния металл превышает 3000 градусов Цельсия.
  • Стеклянная колба лампы накаливания содержит инертный газ. Позволяя уберечь спираль от сгорания, убирает необходимость создания вакуума (формирует отрицательное давление колбы, понижает механическую прочность конструкции).

    Лампочка накаливания

  • Спираль лампы накаливания подпирается молибденовыми держателями, питается током никелевых электродов. Материалы выбраны сообразно назначению. Молибден тугоплавкий, никеля температура ликвидуса пониже, зато наделен низким коэффициентом теплового расширения. Место контакта со спиралью избегает механических деформаций, продляет срок службы лампы накаливания.
  • Электроды посредством медных проводников соединяются с контактными площадками цоколя. Редко лампа накаливания снабжается собственным плавким предохранителем. Также внутри цоколя.

История создания ламп накаливания

Спирали далеко не сразу стали изготавливать из вольфрама. Применялись графит, бумага, бамбук. Много людей шло параллельным путем, создавая лампы накаливания.

Бессильны привести список 22 имен ученых, называемых зарубежными писателями авторами изобретения. Неправильно приписывать заслуги Эдисону, Лодыгину. Сегодня лампы накаливания далеки от совершенства, стремительно теряют маркетинговую привлекательность. Превышение амплитуды питающего напряжения на 10% (половину пути — 5% — РФ проделала в 2003 году, подняв вольтаж) номинала сокращает срок службы вчетверо. Снижение параметра закономерно урезает отдачу светового потока: 40% теряется при эквивалентном относительном изменении характеристик питающей сети в меньшую сторону.

Пионерам гораздо хуже. Джозеф Сван (Joseph Swan) отчаялся добиться достаточной разреженности воздуха колбы лампы накала. Насосы (ртутные) того времени неспособны выполнить задачу. Нить сгорала посредством сохранившегося внутри кислорода.

Смысл ламп накала довести спирали до степени нагрева, тело начинает светиться. Сложностей добавляло отсутствие в середине XIX века высокоомных сплавов – квота преобразования силы электрического тока сформирована увеличенным сопротивлением проводящего материала.

Усилия ученых мужей ограничивались следующими направлениями:

  1. Выбор материала нити. Критериями выступали одновременно высокое сопротивление, устойчивость к горению. Волокна бамбука, являющегося изолятором, покрывали тонким слоем проводящего графита. Малая площади проводящего слоя угля повышало сопротивление, давая нужный результат.
  2. Однако древесная основа быстро воспламенялась. Вторым направлением считаем попытки создать полный вакуум. Кислород известен с конца XVIII века, ученые мужи быстро доказали: элемент участвует в горении. В 1781 году Генри Кавендиш определил состав воздуха, начиная разрабатывать лампами накала, слуги науки ведали: земная атмосфера разрушает нагретые тела.
  3. Важно передать напряжение нити. Шла работа, преследующая цели создания разъемных, контактных частей цепи. Понятно, тонкий слой угля снабжен большим сопротивлением, как подвести электричество? Трудно поверить, пытаясь достичь приемлемых результатов, использовали ценные металлы: платина, серебро. Получая приемлемую проводимость. Недешевыми путями удавалось избежать нагрева внешней цепи, контактов, нить накалялась.
  4. Отдельно отметим резьбу цоколя Эдисона, используемую поныне (Е27). Удачная идея, легшая в основу быстро заменяемых лампочек накала. Прочие способы создания контакта, наподобие пайки, мало годятся. Соединение способно распасться, разогретое действием тока.

Лампа Эдисона

Стеклодувы XIX века достигли профессиональных высот,  колбы изготавливали запросто. Отто фон Герике, конструируя генератор статического электричества, рекомендовал сферическую колбу залить серой. Материал застынет — стекло разбить. Получался идеальный шар, при трении собирал заряд, отдавая стальному стержню, проходящему через центр конструкции.

Пионеры отрасли

Можете прочесть: идея подчинить электричество целям освещения впервые реализована сэром Гемфри Дэви. Вскоре после создания вольтова столба ученый вовсю экспериментировал с металлами. Выбрал благородную платину за высокую температуру плавления – прочие материалы воздухом быстро окислялись. Попросту сгорали. Источник света вышел неяркий, давая основу сотням последующих наработок, показав направление движения желающим получить конечный результат: осветить, заручившись помощью электричества.

Произошло в 1802 году, ученому исполнилось 24 года, позже (1806) Гемфри Дэви представил суду общественности вполне работоспособный разрядный осветительный прибор, в конструкции которого ведущую роль занимали два угольных стрежня. Следует отнести короткую жизнь столь блистательного светила небосвода науки, давшего миру представление о хлоре, йоде, ряде щелочных металлов, на постоянные эксперименты. Смертельные опыты по вдыханию угарного газа, работы с оксидом азота (мощным отравляющим веществом). Авторы отдали честь блистательным подвигам, сократившим жизнь ученого.

Осветительные приборы Дэви

Гемфри забросил, вырезав целое десятилетие исследований осветительных приборов, вечно занятый. Сегодня Дэви называют отцом электролиза. Трагедия 1812 года Felling Colliery наложила глубокий отпечаток, помрачив сердца многих. Сэр Гемфри Дэви пополнил ряды занявшихся разработкой безопасного источника света, уберегающего шахтёров. Электричество подходило мало, не существовало мощных надежных источников энергии. Чтобы рудничный газ перестал взрываться временами, применялись разные меры, наподобие металлической сетки-диффузора, препятствующей распространению пламени.

Сэр Гемфри Дэви сильно опередил время. Лет примерно на 70. Конец XIX века лавинообразно выдал новые конструкции, призванные вырвать человечество из вечной тьмы, благодаря использованию электричества. Одним из первых Дэви отметил зависимость сопротивления материалов от температуры, позволяя позже Георгу Ому получить знаменитый закон для участка цепи. Спустя полвека открытие было положено в основу создания Карлом Вильгельмом Сименсом первого электронного термометра.

6 октября 1835 года Джеймс Боумэн Линдсей продемонстрировал лампочку накала, окруженную стеклянной колбой для защиты от действия атмосферы. Как выразился изобретатель: можно было читать книгу, рассеивая темноту на расстоянии полутора футов от подобного источника. Джеймс Боумэн, считают общепризнанные источники, является автором идеи защиты нити накала стеклянной колбой. Правда?

Джеймс Боумен Линдсей

Склонны утверждать, в этом месте мировая история немного запуталась. Первый эскиз подобного устройства датируется 1820 годом. Приписывается почему-то Уорену де ла Ру. Которому было… 5 лет от роду. Одинокий исследователь заметил несуразицу, поставив дату… 1840 год. Бессилен детсадовец сделать столь великое изобретение. Причем забылись впопыхах демонстрации Джеймса Боумэна. Многие исторические книги ( одна 1961 года, авторства Льюиса) так трактовали неведомо уже откуда взявшуюся картинку. Видимо, автор ошибся, другой источник, 1986 года Джозефа Стоера, относит изобретение на счет Августа Артура де ла Рива (1801 года рождения). Гораздо лучше соответствует действительности, объясняя демонстрации Джеймса Боумэна пятнадцатью годами позже.

Прошло незамеченным русскоязычным доменом. Английские источники проблема трактуют следующим образом: имена де ла Ру и де ла Рив явно перепутаны, касаться могут минимум четырех личностей. Физики Уорен де ла Ру, Август Артур де ла Рив упомянуты, первый в 1820 году посещал детсад, образно говоря. Прояснить историю могут отцы упомянутых мужей: Томас де ла Ру (1793 – 1866), Чарльз Гаспар де ла Рив (1770 – 1834). Неизвестный джентльмен (леди) провел целое исследование, убедительно доказал: ссылка на фамилию де ла Ру несостоятельна, сослался горой научной литературы начала XX — конца XIX века.

Неизвестный потрудился просмотреть патенты Уорена де ла Ру, набралось девять штук. Лампы накала описываемой конструкции отсутствуют. Августа Артура де ла Рива, начавшего публикацию научных трудов в 1822 году, сложно представить изобретающим стеклянную колбу. Посещал Англию – родину лампочки накала – исследовал электричество. Желающие могут написать автору статьи англоязычного сайта по электронной почте [email protected]. Пишет «ежков»: с удовольствием примет к сведению информацию, касающуюся вопроса.

Истинный изобретатель лампочки накала

Достоверно известно, в 1879 году Эдисон запатентовал (US Patent 223898) первую лампочку накала. Потомки зафиксировали событие. Касаемо более ранних публикаций, авторство вызывает сомнение. Неизвестен подаривший миру коллекторный двигатель. Сэр Гемфри Дэви отказался брать патент на изобретенный безопасный фонарь для шахты, сделав изобретение общедоступным. Подобные прихоти создают немалую путаницу. Бессильны выяснить, кто первым придумал помещать нить накала внутрь стеклянной колбы, обеспечив работоспособность конструкции, используемой повсеместно.

Лампы накаливания выходят из моды

Лампа накаливания использует вторичный принцип производства света. Достигает высокой температуры нить. КПД устройств мал, большая часть энергии расходуется впустую. Современные нормы диктуют стране беречь энергию. В моде разрядные, светодиодные лампочки. Навсегда остались в памяти Гемфри Дэви, де ла Ру, де ла Рив, Эдисон, приложившие руку, потрудившиеся вырвать человечество из тьмы.

Обратите внимание, Чарльз Гаспар де ла Рив скончался в 1834 году. Следующей осенью прошла первая публичная демонстрация… Некто нашел записи погибшего исследователя? Вопрос разрешит время, ибо все тайное откроется. Читатели обратили внимание: неизвестная сила подталкивала Дэви попробовать использовать защитную колбу, помогая шахтерам. Сердце ученого оказалось чересчур большим увидеть явный намек. Нужной информацией англичанин обладал…

vashtehnik.ru

Лампа накаливания. Электронагревательные приборы — урок. Физика, 8 класс.

Лампа накаливания — электрический источник света, в котором нить накала (спираль) нагревается до высокой температуры за счёт протекания через неё электрического тока, в результате чего излучается видимый свет. В качестве нити накала в настоящее время используется в основном спираль из вольфрама и сплавов на его основе.

 

 

Во время работы лампы температура нити накаливания достигает 3000С0. Спираль находится в стеклянном баллоне (колбе), из которой выкачивают воздух. Однако это приводит к испарению вольфрама с поверхности спирали и перегоранию спирали. Во избежание этого баллон лампы заполняют азотом или инертными газами — криптоном или аргоном, которые предотвращают разрушение нити накала.
Устройство лампы накаливания можно рассмотреть на рисунке, на нём также указаны некоторые составные части лампы.


 

Изобрёл первую электрическую лампу в 1872—1873 годах российский инженер-изобретатель — Лодыгин Александр Николаевич (1847–1923).

 

 

 

На улицах Петербурга первые две лампы Лодыгина загорелись в августе 1873 года. На рисунке мы видим лампу Лодыгина 1874 года.


Электрическую лампу, удобную для промышленного изготовления, создал американский изобретатель Томас Эдисон.

 

 

 

В лампочке накаливания только 5% потреблённой энергии превращается в свет, а остальная энергия преобразуется в тепло. К тому же, эти лампочки имеют малый срок службы и низкую световую отдачу. Более экономичными являются энергосберегающие (люминесцентные) лампы, которые более 70% энергии преобразуют в свет, и светодиодные лампы.

Энергосберегающая (люминесцентная) лампа состоит из колбы, которая наполнена парами ртути и аргона, и пускового устройства — стартера. Внутренняя поверхность колбы покрыта специальным веществом — люминофором. При воздействии ультрафиолетового излучения на люминофор начинает излучаться видимый свет. Люминофор может создавать различные цвета светового потока, так как сам может иметь разнообразные оттенки. Компактная люминесцентная лампа представлена на рисунке.

 

 

Она состоит из колбы с люминофорным покрытием, в которой содержатся пары ртути и впаяны нити накала, — \(1\), электронной пускорегулирующей аппаратуры — \(2\), пластмассового корпуса — \(3\) и цоколя — \(4\).

При одинаковой светоотдаче потребление электроэнергии лампами накаливания приблизительно в \(5\) раз больше, чем у люминесцентных ламп. Именно во столько раз различаются их мощности.

 

 

В светодиодных лампах электрический ток пропускают через миниатюрное электронное устройство — чип, нанесённое на полупроводниковый кристалл. При прохождении электрического тока светодиод испускает свет.
Устройство светодиодной лампы показано на рисунке.

 

 

Светодиоды используют как индикаторы включения на панелях приборов, табло, подсветке мобильных телефонов, мониторов и др.

 

Обрати внимание!

Посмотри видеоролик «Работа тока в лампе накаливания» на сайте: http://school-collection.edu.ru/catalog/rubr/924489d8-c480-448b-aa6f-e24ad77606a6/110489/

 

Тепловое действие электрического тока впервые наблюдалось в 1801 году, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808 году, когда был предложен электрозапал для пороха.
Тепловое действие тока используется в различных электронагревательных приборах и установках. Дома мы используем электрические плитки, утюги, чайники, обогреватели и т.д. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, инкубаторы, сушат зерно.
Основная часть любого нагревательного электроприбора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный выдерживать нагревание до высокой температуры.
Рассматривая таблицу удельных сопротивлений веществ, без труда можем найти такое вещество.

 

 

Наибольшее удельное сопротивление из веществ данной таблицы имеет нихром. Нихром — это сплав никеля, железа, хрома и марганца.
В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит нихромовая лента, от которой нагревается нижняя часть утюга.

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://lib3.podelise.ru/docs/2118/index-25494.html
http://thedb.ru/items/Chem_otlichaetsia_ENERGOSBEREGAYUSHCHAYA_lampa_ot_lampy_NAKALIVANIYA/
http://www.rae.ru/meo/?section=content&op=show_article&article_id=4674 
http://physics05.at.ua/index/stroenie_lampy_nakalivanija/0-11

 

www.yaklass.ru

Строение лампы накаливания схема. Лампочка накаливания — а все ли вы о ней знаете

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Продолжаю эксперимент по сравнению лампы накаливания мощностью 75 (Вт), компактной люминесцентной лампы «Navigator» мощностью 15 (Вт) и светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).

И сегодня я проведу измерение температуры нагрева ламп в рабочем режиме и рассчитаю их фактическую потребляемую мощность. Напомню Вам, что с первой частью экспериментов про сравнение светового потока при разных уровнях напряжения перечисленных ламп Вы можете .

Температура нагрева ламп

С помощью тепловизора Fluke Ti9 Electrical произведу замер температуры нагрева ламп в разных точках (колба, основание лампы и патрон) через один час их работы.



1. Лампа накаливания 75 (Вт)

Температура нагрева лампы накаливания мощностью 75 (Вт) в верхней части колбы (в месте расположения нити накаливания) составила 268°С. На снимке ниже в указанной точке (квадратный курсив) температура равна 259,9°С.

Если прикоснуться к колбе, то можно получить ожог.



Температура нагрева патрона — 50,9°С.


Самую максимальную температуру нагрева люминесцентной лампы, которую мне удалось зафиксировать — это 139°С. Эта точка приходится на основание колбы, т.е. нагрев достаточно локальный (местный).


Температура по всей поверхности колбы примерно одинаковая и составила 74,5°С.


Если прикоснуться к колбе лампы, то нагрев достаточно ощутим.

Основание компактной люминесцентной лампы нагрелось в среднем до 58,5°С. В этом месте лампы находится схема (ЭПРА).


Максимальная температура нагрева светодиодной лампы мощностью 9 (Вт) EKF серии FLL-A составила всего 65°С. Этот нагрев зафиксирован в нижней части колбы, там где расположены драйвер и светодиоды. Низкий нагрев светодиодной лампы EKF обусловлен тем, что ее корпус сделан из алюминия и теплорассеивающего пластика, который обеспечивает хорошую теплоотдачу.

Об устройстве этой лампы я еще расскажу Вам более подробно в своих следующих статьях — подписывайтесь на рассылку.


Температура верхней части колбы составила всего 32,4°С. Ее без проблем можно держать в руках.


Температура патрона составила в среднем 36,9°С.


Результаты измеренных температур я занес в таблицу.


Какие выводы можно сделать из этого эксперимента?

Из-за высокой температуры нагрева ламп накаливания (в моем случае 268°С) условия их применения несколько ограничены в плане пожарной безопасности. Высокая температура может стать причиной возгорания (пожара). В связи с этим нужно соблюдать ряд определенных требований.

Например, в , мощность ламп накаливания не должна превышать 60 (Вт). Также не стоит забывать про термостойкую арматуру (патроны, плафоны, основание) светильника: керамика, карболит, стекло, и соблюдать расстояние от лампы до горючих материалов (пластиковые детали, деревянная поверхность, ткань).

Компактная люминесцентная лампа имеет максимальную температуру 139°С, но этот нагрев достаточно локальный (местный), поэтому можно считать, что бОльшая часть ее колбы имеет температуру нагрева 74,5°С.

Победителем данного испытания безусловно является светодиодная лампа EKF серии FLL-A. Ее максимальная температура составила всего 65°С. Это почти в 4 раза меньше, чем у лампы накаливания и в 2 раза меньше, чем у лампы КЛЛ.

КЛЛ и светодиодная лампа обладают низким уровнем пожарной опасности и минимальным риском возгорания, благодаря чему их применение более широкое по сравнению с лампами накаливания. Также эти лампы совершенно безопасно устанавливать в светильниках с пластиковыми патронами, плафонами и основанием, тканевыми абажурами, они идеально подходят для натяжных потолков и т.д.

Энергопотребление ламп

С помощью цифрового мультиметра, подключенного последовательно в цепь каждой лампы, произведем измерение потребляемого тока, а затем косвенным путем рассчитаем их мощность и сравним с заявленной (по паспорту).

1. Лампа накаливания 75 (Вт)


Измеренный ток потребления лампы накаливания мощностью 75 (Вт) равен 0,29 (А).


Зная напряжение в сети (220 В), рассчитаем энергопотребление лампы накаливания. Лампа накаливания не содержит в себе индуктивных и емкостных элементов — это чисто активная нагрузка, поэтому для расчета ее потребляемой активной мощности применим вот эту формулу:

Pрасч. = Uсети·Iизм. = 220·0,29 = 63,8 (Вт)

2. Компактная люминесцентная лампа (КЛЛ) мощностью 15 (Вт) «Navigator»


Измеренный ток потребления компактной люминесцентной лампы мощностью 15 (Вт) равен 47,8 (мА) или 0,0478 (А).


Измеренный ток не является активным, в отличие от измеренного тока лампы накаливания, т.к. лампа КЛЛ содержит в себе электронный пуско-регулирующий аппарат (ЭПРА), который является источником реактивной мощности. А это значит, чтобы вычислить активный ток, нужно измеренное значение тока умножить на коэффициент мощности или, другими словами, косинус «фи» (cosφ). Коэффициент мощности мне не известен (в паспорте на лампу он не указан), поэтому я возьму усредненное значение для электронных ПРА, которое составляет 0,95.

Энергопотребление люминесцентной лампы рассчитаем путем умножения значения напряжения сети (220 В) на активный ток лампы:

Pрасч. = Uсети·Iизм.·cosφ = 220·0,0478·0,95 = 9,99 (Вт)

Полученное значение занесу в сводную таблицу.

3. Светодиодная лампа (LED) мощностью 9 (Вт) EKF серии FLL-A

Измеренный ток потребления светодиодной лампы мощностью 9 (Вт) EKF равен 31,0 (мА) или 0,031 (А).


Измеренный ток не является активным из-за того, что в светодиодной лампе установлен драйвер, который имеет реактивную составляющую. И это нужно учесть аналогичным образом, как в предыдущем случае с лампой КЛЛ. Коэффициент мощности для светодиодной лампы в паспорте не указан, поэтому я опять же возьму усредненное значение 0,95.

Энергопотребление светодиодной лампы рассчитаем путем умножения значения напряжения сети (220 В) на активный ток лампы:

Pрасч. = Uсети·Iизм.·cosφ = 220·0,031·0,95 = 6,47 (Вт)

Полученное значение занесу в сводную таблицу.


elektrokomplektnn.ru

Лампы накаливания. Виды и устройство. Цоколи и применение

Старые добрые лампы накаливания знает каждый. Хотя в последние годы ее активно вытесняют газоразрядные и светодиодные источники света, лампа накаливания не исчезла с прилавков магазинов. Ее по-прежнему выпускают и применяют для освещения.

Устройство лампочки накаливания самое простое. Между двух электродов натянута спиральная вольфрамовая нить. При прохождении тока нить нагревается и начинает светиться. Иными словами, образуется тепловое излучение, которое освещает пространство вокруг. Чтобы нить прослужила максимально долго и не окислилась, электроды помещают в колбу, заполненную инертным газом. В небольших лампочках вовсе создают вакуум. Колбы используются прозрачные, матовые и с особым покрытием, изменяющим характеристики свечения.

В зависимости от того, чем заполнена колба, лампы разделяют на следующие типы:

  • Вакуумные (мощностью не более 25 Вт).
  • Аргоновые (применяется смесь аргона и азота).
  • Криптоновые.
  • Ксеноновые.
  • Галогенные.
  • Ксенон-галогенные.

В галогенных типах используют смесь йода и брома. Такие источники света отличаются длительной службой и высокой яркостью. Ксеноновые, в свою очередь, ярче аргоновых, а аргоновые превосходят по яркости обычные вакуумные. Самыми яркими считаются ксенон-галогенные источники.

Мощность и тип цоколя

Помимо газа наполнения колбы, лампочки накаливания отличаются мощностью и типом цоколя. Мощность изменяется в диапазоне 15-750 Вт. Лампы для прожекторов могут иметь большее значение мощности (до 50 кВт).

Для бытовых нужд используется преимущественно винтовой цоколь (E) разного диаметра. Диаметр указывается в миллиметрах цифрами после буквы E.

Выпускают также лампы без цоколя с байонетным (штыковым) соединением. Обозначается буквой B. Их устанавливают на кино и диапроекторах, автомобилях, морском, железнодорожном транспорте и в других местах, где возможны сильные вибрации или необходимо соблюдать точную позицию.

Лампы накаливания: назначение

Лампы общего назначения применяются для освещения жилых комнат, рабочих мест, декоративной подсветки и других бытовых нужд. Поскольку они потребляют много энергии, в мире наблюдается тенденция по сокращению их выпуска.

Для изготовления фар применяют источники света с колбой сложной формы. Их устанавливают на летательных аппаратах и автомобильном транспорте. В копировальной и печатной лазерной технике используют нагревательные лампочки со спиралью. Существуют и другие специальные сферы применения, поэтому лампы накаливания не сдают свои позиции, продолжая пользоваться спросом.

Похожие темы:

electrosam.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *