Из чего делают лампочки – Устройство лампы накаливания

Содержание

Устройство лампы накаливания

Дата публикации: .

Устройство и назначение основных частей ламп накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Таблица 1

Температура плавления металлов и их соединений

МеталлыT, °СКарбиды и их смесиT, °СНитридыT, °СБоридыT, °С
Вольфрам
Рений
Тантал
Осмий
Молибден
Ниобий
Иридий
Цирконий
Платина
3410
3180
3014
3050
2620
2470
2410
1825
1769
4TaC +
+ HiC
4TaC +
+ ZrC
HfC
TaC
ZrC
NbC
TiC
WC
W2C
MoC
VnC
ScC
SiC
3927

3927

3887
3877
3527
3427
3127
2867
2857
2687
2557
2377
2267

TaC +
+ TaN
HfN
TiC +
+ TiN
TaN
ZrN
TiN
BN
3373

3307
3227

3087
2977
2927
2727

HfB
ZrB
WB
3067
2987
2927

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10-10 и 9,95×10-8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Таблица 2

Основные физические свойства вольфрамовой нити

Температура, КСкорость испарения, кг/(м²×с)Удельное электрическое сопротивление, 10-6 Ом×см
Яркость кд/м²
Световая отдача, лм/ВтЦветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10-35
2,51 × 10-23
8,81 × 10-17
1,24 × 10-12
8,41 × 10-10
9,95 × 10-8
3,47 × 10-6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al

2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10

-7 К-1. Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10-7 К-1. Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10-7 К-1. Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10-7 К-1). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название «платинит». Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Газы

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Таблица 3

Основные параметры инертных газов

ГазМолекулярная массаПотенциал ионизации, ВТеплопроводность, 10-2 Вт/(м×К)
Водород
Аргон
Криптон
Ксенон
28,01
39,94
83,70
131,30
15,80
15,69
13,94
12,08
2,38
1,62
0,80
0,50

Источник: Афанасьева Е. И., Скобелев В. М., «Источники света и пускорегулирующая аппаратура: Учебник для техникумов», 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.

artillum.ru

Из чего состоит лампа накаливания

Добрый день дорогие читатели! Сегодня мы узнаем из чего состоит лампа и как работает, многие задавались таким вопросом и я решил подробно описать это в своей очередной статье.

Итак, электрические лампы преобразуют электрическую энергию в световую. В быту широко применяются лампы накаливания. Они имеют простое устройство, стоят недорого, но неэкономичные. Только 2—3 % потребляемой электроэнергии расходуется на излучение света, а остальная превращается в тепло.

Рабочая часть накаливания — спираль (нить накала). Спираль представляет собой тоненькую металлическую пружинку, концы которой приварены к двум электродам. Электроды служат для подведения электрического тока. Один электрод соединен с цоколем и образует боковой контакт, другой присоединен к центральному контакту. Для поддержки спирали предназначены металлические проволочки — траверсы.

При работе спираль она нагревается почти до 2200 °С, поэтому ее изготовляют из тугоплавкого металла — вольфрама. Чтобы спираль не сгорела, ее помещают в стеклянную колбу, из которой откачан воздух. Колбы мощных ламп заполняют специальным газом, который не поддерживает горения (например, инертный газ криптон).

На колбе указаны ее рабочие параметры: рабочее напряжение и мощность. Вы уже знаете, что чем больше мощность, тем больше она потребляет электроэнергии и ярче светит.

Параметры лампы должны соответствовать параметрам электроарматуры.

Лампа

Из чего состоит лампа накаливания:

  1. Стеклянная колба
  2. Вольфрамовая нить
  3. Свинцовая проволка
  4. Молибденовые держатели нити канала
  5. Лопаточка
  6. Биметаллическая проволка
  7. Втулка плавной вставки
  8. Плавная вставка
  9. Замазка
  10. Штенгель
  11. Свинцовая проволка
  12. Цоколь
  13. Паянные контакты

Ниже расположено видео в котором подробно рассказано из чего состоит лампа, как делают лампы и как они работают.

Из чего состоит лампа видео и как ее делают видео

VN:F [1.9.22_1171]

Рейтинг 0.0/10 (0 голосов)

Поделитесь с друзьями:

world-mans.ru

Из чего сделана лампа накаливания | Крабовые ручки

Из каких материалов, веществ, химических элементов сделаны различные элементы «вакуумной» лампы накаливания? Вот из таких:

Из чего это сделано

  1. Колба лампы сделана из силикатного стекла (не закалённого, не термостойкого, не кварцевого — из самого обычного). Стеклянная конструкция внутри лампы (состоит из штабика, тарелочки и штенгеля) сделана из такого же стекла. Силикатное стекло — сплав  кварцевого песка SiO2, соды Na2CO3 и карбоната кальция CaCO3, что в итоге даёт соединение состава Na2O·CaO·6SiO2. Колба наполнена инетртным газом (чаще всего 86% аргона Ar и 14% азота N2) или, если лампа маломощная, имеет внутри просто откаченный, разряженный воздух.
  2. Нить накаливания сделана из вольфрама W. Не совсем чистого. С присадками (менее 1% в сумме) оксида кремния SiO2, калия K, натрия Na, иногда оксида алюминия Al2O3.
  3. Держатели нити накаливания сделаны из чистого молибдена Mo. Молибден сохраняет упругость при температуре близкой к температуре его плавления (2623°C = 2896 K, что как бы кстати немного выше 2700 K — температуры раскалённой вольфрамовой нити).
  4. Электроды сделаны из никелированного железа (Fe, Ni). Железная проволока, покрытая никелем. Проверено. А вовсе не из чистого никеля, как написано везде в интернете.
  5. Вводы (куски проволоки внутри стекла) сделаны из платинита. Платинит — сплав, состоящий из никеля Ni (42..46%), углерода C (0.15%), железа Fe (54..58%). Из платинита изготавливают биметаллические проволоки и ленты (снаружи — медь, в количестве 1/4 по массе от массы сердечника). Их также называют платинитом. Именно эта медь видится красной проволокой внутри стекла ламп. Платинит имеет такой же тепловой коэффициент линейного расширения, как у стекла, поэтому в этом месте при нагревании лампы ничего не трескается и проволока не выпадает из стекла.
  6. Выводы сделаны из меди Cu, технической, неизвестной чистоты.
  7. Один из выводов припаян к цоколю либо оловянно-свинцовым припоем  ПОС-40 (40% олова Sn, 60% свинца Pb), либо точечной контактной сваркой.
  8. Цоколь сделан из оцинкованного железа. Цоколь приклеен к колбе мастикой следующего состава: смесь мраморного порошка, фенолформальдегидного лака, карбамида и уротропина. Сначала при нагревании эта смесь размягчается и прилипает к стеклу колбы и железу цоколя, затем, при дальнейшем нагревании до 240°C, затвердевает.
  9. Изолятор между двумя контактами цоколя сделан из смальты — окрашенное (в данном случае чёрным пигментом-наполнителем) в массе стекло.
  10. Контактная пластина (скорее полусфера, пупырышек) сделана либо из латуни, к которой второй вывод припаян оловянно-свинцовым припоем, либо из оцинкованного железа.
Полезные ссылки:
  1. Устройство лампы накаливания — сатья на сайте artillum.ru.
  2. Солнечный свет из Калашниково — репортаж с завода-производителя ламп накаливания.
  3. Incandescent Lamps — про устройство таких лампочек, на английском языке.
  4. Из чего сделана галогенная лампа — аналогичная информация про галогенки.

Из чего сделана лампа накаливания

5 (100%) 3 votes

almois.ru

Производство ламп накаливания. Как делают лампочки

Сегодня практически никто из нас не может и представить жизни без таких привычных для нас вещей как телевизор, телефон и прочее. К этой же категории следует отнести и свет, который производится при помощи лампочек. Изобретение первой лампочки датируется 1838 годом, а её автором был Жан Жобар. Данная лампа в качестве источника накаливания имела уголь, что по крупному счету не отличало её от газовых фонарей и ламп. Уже более усовершенствованная лампа была придумана через три года англичанином Деларю, который изобрел первую лампу накаливания, в которой использовалась спираль. Известным российским физиком Александром Николаевичем Лодыгиным ещё в 1874 году была изобретена отечественная лампа накаливания, в которой использовался угольный стержень в вакууме. Изобретение дало толчок к началу электрификации Российской империи. Специальный план по 100-процентной электрификации страны был представлен в 1913 году, однако, осуществить его будет суждено уже власти большевиков, которая выдаст план за чисто свою идею. Как бы там ни было, к лампочке мы за это время уже сильно привыкли, однако, некоторые вопросы так и остаются до сих пор открытыми, к примеру, — производство ламп накаливания.

Оборудование для производства ламп накаливания

Для производства ламп накаления требуется иметь достаточно современное и качественное оборудование. Главная трудность заключается в работе с газом и вакуумом. Кроме того, для производства вольфрамовой нити требуется специальная машина, которая производит нить с толщиной в 0,4 мкр. Более того, вольфрам – довольно дорогостоящий материал и затраты на этот металл не всегда окупаются одной лишь продажей лампочек. Далее, следует учитывать и производства стекла – колбы. Для этого тоже существуют специальные стеклодувные машины. Процесс создания лампы требует большой точности складывания лампочек. Если процесс выполняется неправильно на одном этапе (изготовления колбы, термального тела или цоколя), то есть все шансы, что такая лампочка не прослужит долго.

Таким образом, производство ламп является процессом, который вот уже более полутора века совершенствуется и упрощается. Сегодня мы имеем несколько видов ламп, в зависимости от их назначения. Совсем недавно в моду начали входить энергосберегающие лампочки, которые имеют более высокий КПД, а также долговечность. Кроме того, яркость такой лампочки в несколько раз превосходит яркость традиционной. Как бы там ни было, но лампа и до сих пор, несмотря на свою простоту, остается чуть ли не единственным изобретением, которое человечеству несет свет!

Технология производства ламп накаливания

Лампа накаления использует эффект нагревания проводника (тела накаливания) во время протекания через него электрического тока. Температура тела накала резко возрастает после включения тока. Во время работы, накаляемое тело излучает электромагнитное тепловое поле в соответствии с законом Планка. Формулировка Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн. Для того чтобы получить видимое излучение, необходимо, чтобы температура накаляемого была составляла несколько тысяч градусов. При температуре 5770 градусов световой эффект равен спектру Солнца. Чем меньше температура, тем меньше доля видимого света, и тем более “красным” кажется излучение.

В сегодняшнем производстве спиралей для ламп используется вольфрам, который впервые начал использовать наш ученный Лодыгин, о котором мы говорили несколько выше. В обычном воздухе при значительных температурах вольфрам мгновенно превратился бы в оксид. По этой причине тело накала помещено в колбу, из которой в процессе изготовления лампы откачивается воздух. Первые колбы изготавливали вакуумными; в настоящее время только лампочки малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колба более мощной лампочки наполняется инертным газом (аргоном, криптоном или азотом). Повышенное давление в колбе газонаполненных ламп резко уменьшает скорость испарения вольфрама, благодаря чему не только увеличивается срок службы лампы, но и есть возможность повысить температуру тела накаливания, что позволяет повысить коэффициент полезного действия, а также приближает спектр излучения к белому. Газонаполненная лампочка не так быстро будет темнеть за счёт осаждения материала тела накала, в отличии от вакуумной лампы.

Видео как делают лампочки:

Для изготовления нити накаливания, необходимо использовать металл с положительным температурным коэффициентом сопротивления, который позволит только увеличивать сопротивление температуре с её ростом. Такая конструкция производит автоматическую стабилизацию мощности лампы на необходимом уровне при подключении к источнику напряжения (источнику с низким выходным сопротивлением). Это позволит проводить подключение ламп непосредственно к распределительной сети без использования балласта, что выгодно отличает их от газоразрядных лампочек.

moybiznes.org

Устройство лампы накаливания, как она работает, из чего состоит

Нагретое электрическим током тело может, оказывается, не только излучать тепло, но и светиться. Первые источники света функционировали именно на этом принципе. Рассмотрим, как работает лампа накаливания – самый массовый осветительный прибор в мире. И, хотя его со временем предстоит полностью заместить на компактные люминесцентные (энергосберегающие) и светодиодные источники света, без этой технологии человечеству еще долго не обойтись.

Конструкция лампы накаливания

Основным элементом лампочки является спираль из тугоплавкого материала – вольфрама. Для увеличения ее длины и, соответственно, сопротивления, она скручена в тонкую спираль. Это не видно невооруженным глазом.

Спираль укреплена на поддерживающих элементах, крайние из которых служат для присоединения ее концов к электрической цепи. Они изготовлены из молибдена, температура плавления которого выше температуры разогретой спирали. Один из молибденовых электродов соединяется с резьбовой частью цоколя, а другой – с его центральным выводом.

Молибденовые держатели удерживают вольфрамовую спираль

Из колбы, сделанной из стекла, выкачан воздух. Иногда внутрь вместо воздуха закачивают инертный газ, например, аргон или его смесь с азотом. Это необходимо для снижения теплопроводности внутреннего объема, в результате чего стекло менее подвержено нагреву. Дополнительно эта мера препятствует окислению нити накала. При изготовлении лампы воздух выкачивается через часть колбы, скрытую затем цоколем.

Принцип работы лампы накаливания основан на разогреве электрическим током ее нити до температуры, при которой она начинает излучать свет в окружающее пространство.

Лампы накаливания можно изготовить на мощность от 15 до 750 Вт. В зависимости от мощности применяются разные типы резьбовых цоколей: Е10, Е14, Е27 или Е40. Для декоративных, сигнальных и ламп подсветки используются цоколи ВА7S, ВА9S, ВА15S. Такие изделия при установке втыкаются внутрь патрона и поворачиваются на 90 градусов.

Помимо обычной, грушеобразной формы, выпускаются и декоративные лампы, у которых колба выполняется в форме свечи, капли, цилиндра, шара.

Лампа с колбой, не имеющей покрытия, светится желтоватым светом, по составу наиболее напоминающим солнечный. Но при нанесении на внутреннюю поверхность стекла специальных покрытий она может стать матовой, красной, желтой, синей или зеленой.

Интерес представляет устройство зеркальной лампы накаливания. На часть ее колбы нанесен отражающий слой. В результате, за счет отражения от него, световой поток перераспределяется в одном направлении.

Достоинства ламп накаливания

Самым важным плюсом в пользу применения лампочек накаливания является простота их изготовления и, соответственно, цена. Проще осветительного прибора придумать невозможно.

Лампы изготавливают на широкий диапазон мощностей и габаритных размеров. Все остальные современные источники света содержат устройства, преобразующие напряжение питания в необходимую для их работы величину. Хотя их и ухитряются впихнуть в стандартные габаритные размеры лампочки, но при этом усложняется конструкция, увеличивается количество деталей в составе устройства. А это не всегда улучшает показатели стоимости и надежности. Схема же включения лампы накаливания не требует никаких дополнительных элементов.

Светодиодные лампы вытеснили обычные из портативных устройств: переносных источников света, питающихся от батареек и аккумуляторов. При той же светоотдаче они потребляют меньший ток, а габаритные размеры светодиода еще меньше, чем лампочек, использующихся ранее в фонариках. Да и в составе елочных гирлянд они работают успешнее.

Стоит отметить еще одно достоинство, присущее лампочкам накаливания – их спектр свечения наиболее близок к солнечному, чем у всех остальных искусственных источников света. А это – большой плюс для зрения, ведь оно адаптировано именно к солнцу, а не монохромным светодиодам.

Из-за тепловой инерции разогретой нити накала свет от нее практически не пульсирует. Чего нельзя сказать об излучении от остальных устройств, особенно люминесцентных, использующих в качестве пускорегулирующего устройства обычный дроссель, а не полупроводниковую схему. Да и электроника, особенно дешевая, не всегда подавляет пульсации от сети должным образом. От этого тоже страдает зрение.

Но не только здоровью может повредить пульсирующий характер работы полупроводниковых устройств, использующихся в современных лампочках. Массовое их применение приводит к резкому изменению формы потребляемого от сети тока, что сказывается в итоге и на форме напряжения. Она настолько изменяется по отношению к изначальной (синусоидальной), что это сказывается на качестве работы других электроприборов в сети.

Недостатки ламп накаливания

Существенный недостаток лампочек накаливания, сокращающий их срок службы – зависимость его от величины питающего напряжения. При повышении напряжения износ нити накала происходит быстрее. Выпускают лампы на разные величины этого параметра (вплоть до 240 В), но при номинальном значении они светят хуже.

Понижение напряжения приводит к резкому изменению интенсивности свечения. А еще хуже воздействуют на осветительный прибор его колебания, при резких скачках лампа может и перегореть.

Но самое худшее – то, что нить накала рассчитана на длительную работу в нагретом состоянии. При нагревании ее удельное сопротивление увеличивается. Поэтому в момент включения, когда нить холодная, ее сопротивление намного меньше того, при котором происходит свечение. Это приводит к неизбежному скачку тока в момент зажигания, приводящему к испарению вольфрама. Чем больше количество включений – тем меньше проживет лампа.

Исправить ситуацию помогают устройства для плавного запуска или диммеры, позволяющие регулировать яркость свечения в широких пределах.

Самым главным недостатком лампочек накаливания считается их низкий коэффициент полезного действия. Подавляющая часть электроэнергии (до 96 %) расходуется на бесполезный нагрев окружающего воздуха и излучение в инфракрасном спектре. С этим поделать ничего нельзя – таков принцип действия лампы накаливания.

Ну и еще: стекло колбы легко разбить. Но в отличие от компактных люминесцентных, содержащих внутри небольшое количество паров ртути, разбитая лампа накаливания кроме возможного пореза ничем владельцу не угрожает.

Галогенные лампы

Причиной перегорания лампы накаливания является постепенное испарение фольфрама, из которого сделана нить. Она становится тоньше, а затем очередной скачок тока при включении расплавляет ее в самом тонком месте.

Этот недостаток призваны устранить галогенные лампы, заполняемые парами брома или йода. При горении испаряющийся вольфрам вступает в соединение с галогеном. Получившееся вещество не способно осаждаться на стенках колбы или других, относительно холодных, внутренних поверхностях.

Вблизи же нити накала вольфрам под действием температуры извлекается из соединения и возвращается на место.

Применением галогенов решается еще одна задача: температуру спирали можно поднять, увеличивая световую отдачу и уменьшить размеры осветительного прибора. Поэтому при той же мощности габариты галогенных ламп оказываются меньше.

 

 

Загрузка…

1396

Понравилась статья? Поделитесь:

Советуем к прочтению

voltland.ru

устройство, принцип работы, виды и технические характеристики

Лампа накаливания – первый электрический осветительный прибор, играющий важную роль в жизнедеятельности человека. Именно она позволяет людям заниматься своими делами независимо от времени суток.

По сравнению с остальными источниками света такое устройство характеризуется простотой конструкции. Световой поток излучается вольфрамовой нитью, расположенной внутри стеклянной колбы, полость которой заполнена глубоким вакуумом. В дальнейшем для увеличения долговечности вместо вакуума в колбу стали закачивать специальные газы — так появились галогеновые лампы. Вольфрам — термостойкий материал с большой температурой плавления. Это очень важно, поскольку для того, чтобы человек увидел свечение, нить должна сильно нагреться за счет проходящего через нее тока.

История создания

Интересно, что в первых лампах использовался не вольфрам, а ряд других материалов, включая бумагу, графит и бамбук. Поэтому, несмотря на то, что все лавры за изобретение и усовершенствование лампы накаливания принадлежат Эдисону и Лодыгину, приписывать все заслуги только им — неправильно.

Писать о неудачах отдельных ученых не станем, но приведем основные направления, к которым прилагали усилия мужи того времени:

  1. Поиски лучшего материала для нити накаливания. Нужно было найти такой материал, который одновременно был устойчив к возгоранию и характеризовался высоким сопротивлением. Первая нить была создана из волокон бамбука, которые покрывались тончайшим слоем графита. Бамбук выступал в качестве изолятора, графит — токопроводящей среды. Поскольку слой был малым, то существенно возрастало сопротивление (что и требовалось). Все бы хорошо, но древесная основа угля приводила к быстрому воспламенению.
  2. Далее исследователи задумались над тем, как создать условия строжайшего вакуума, ведь кислород — важный элемент для процесса горения.
  3. После этого нужно было создать разъемные и контактные компоненты электрической цепи. Задача усложнялась из-за использования слоя графита, характеризующегося высоким сопротивлением, поэтому ученым пришлось использовать драгоценные металлы — платину и серебро. Так повышалась проводимость тока, но стоимость изделия была чересчур высока.
  4. Примечательно, что резьба цоколя Эдисона используется и по сей день — маркировка E27. Первые способы создания контакта включали пайку, но при таком раскладе сегодня говорить о быстро заменяемых лампочках было бы сложно. А при сильном нагреве подобные соединения быстро бы распадались.

В наше время популярность подобных ламп падает в геометрической прогрессии. В 2003 году в России была увеличена амплитуда питающего напряжения на 5 %, к сегодняшнему дню этот параметр составляет уже 10 %. Это привело к сокращению срока эксплуатации лампы накаливания в 4 раза. С другой стороны, если вернуть напряжение на эквивалентное значение вниз, то существенно сократится отдача светового потока — до 40 %.

Вспомните учебный курс — еще в школе преподаватель физики ставил опыты, демонстрируя, как увеличивается свечение лампы при повышении силы тока, подающегося на вольфрамовую нить. Чем выше сила тока, тем сильнее выброс излучения и больше тепла.

Принцип действия

Принцип работы лампы построен на сильном нагреве нити накаливания за счет проходящего через нее электрического тока. Для того чтобы твердотельный материал начал излучать красное свечение, его температура должна достигнуть 570 град. Цельсия. Излучение будет приятным для глаз человека только при увеличении этого параметра в 3–4 раза.

Подобной тугоплавкостью характеризуются немногие материалы. За счет доступной ценовой политики выбор был сделан в пользу вольфрама, температура плавления которого составляет 3400 град. Цельсия. Чтобы повысить площадь светового излучения, вольфрамовая нить скручивается в спираль. В процессе эксплуатации она может нагреваться до 2800 град. Цельсия. Цветовая температура такого излучения равна 2000–3000 К, что дает желтоватый спектр — несопоставимый с дневным, но в то же время не оказывающий негативного воздействия на зрительные органы.

Попадая в воздушную среду, вольфрам быстро окисляется и разрушается. Как уже говорилось выше, вместо вакуума стеклянная колба может заполняться газами. Речь идет об инертных азоте, аргоне или криптоне. Это позволило не только повысить долговечность, но и увеличить силу свечения. На срок эксплуатации влияет то, что давление газа препятствует испарению вольфрамовой нити из-за высокой температуры свечения.

Строение

Обычная лампа состоит из следующих конструктивных элементов:

  • колба;
  • вакуум или инертный газ, закачиваемый внутрь нее;
  • нить накала;
  • электроды — выводы тока;
  • крючки, необходимые для удерживания нити накала;
  • ножка;
  • предохранитель;
  • цоколь, состоящий из корпуса, изолятора и контакта на донышке.

Помимо стандартных исполнений из проводника, стеклянного сосуда и выводов, существуют лампы специального назначения. В них вместо цоколя используются другие держатели или добавляется дополнительная колба.

Предохранитель обычно изготавливается из сплава феррита и никеля и помещается в разрыв на одном из выводов тока. Зачастую он расположен в ножке. Его основное предназначение — защита колбы от разрушения в случае обрыва нити. Связано это с тем, что в случае ее обрыва образуется электрическая дуга, приводящая к плавлению остатков проводника, которые попадают на стеклянную колбу. Из-за высокой температура она может взорваться и вызвать возгорание. Впрочем, долгие годы доказали низкую эффективность предохранителей, поэтому они стали эксплуатироваться реже.

Колба

Стеклянный сосуд используется для защиты нити накаливания от окисления и разрушения. Габаритные размеры колбы подбирают в зависимости от скорости осаждения материала, из которого производится проводник.

Газовая среда

Если раньше вакуумом заполнялись все без исключения лампы накаливания, то сегодня такой подход применяют лишь для маломощных источников света. Более мощные устройства заполняются инертным газом. Молярная масса газа влияет на излучение тепла нитью накаливания.

В колбу галогенных ламп закачиваются галогены. Вещество, которым покрыта нить накала, начинает испаряться и взаимодействовать с расположенными внутри сосуда галогенами. В результате реакции образуются соединения, которые повторно разлагаются и вещество вновь возвращается на поверхность нити. Благодаря этому появилась возможность повысить температуру проводника, увеличив коэффициент полезного действия и срок эксплуатации изделия. Также такой подход позволил сделать колбы более компактными. Недостаток конструкции связан с изначально малым сопротивлением проводника при подаче электрического тока.

Нить накала

По форме нить накаливания может быть разной — выбор в пользу той или иной связан со спецификой лампочки. Зачастую в них применяют нить с круглым сечением, закрученную в спираль, гораздо реже — ленточные проводники.

Современная лампа накаливания работает от нити из вольфрама или осмиево-вольфрамового сплава. Вместо обычных спиралей могут закручиваться биспирали и триспирали, что стало возможным за счет повторного закручивания. Последнее приводит к уменьшению теплового излучения и повышению КПД.

Технические характеристики

Интересно наблюдать за зависимостью световой энергии и мощности лампы. Изменения не линейны — до 75 Вт световая отдача увеличивается, при превышении — снижается.

Одно из преимуществ таких источников света – равномерное освещение, поскольку практически во всех направлениях свет излучается с одинаковой силой.

Еще одно достоинство связано с пульсированием света, которое при определенных значениях приводит к значительной утомляемости глаз. Нормальным значением считают коэффициент пульсации, не превышающий 10 %. Для ламп накаливания параметр максимум достигает 4 %. Самый худший показатель — у изделий мощностью 40 Вт.

Среди всех доступных электрических осветительных приборов лампы накаливания нагреваются сильнее. Большая часть тока преобразуется в тепловую энергию, поэтому прибор больше похож на обогреватель, чем на источник света. Световая отдача находится в диапазоне от 5 до 15 %. По этой причине в законодательстве прописаны определенные нормы, запрещающие, к примеру, использовать лампы накаливания более 100 Вт.

Обычно для освещения одной комнаты достаточно лампы на 60 Вт, которая характеризуется небольшим нагревом.

При рассмотрении спектра излучения и сравнении его с естественным освещением можно сделать два важных замечания: световой поток таких ламп содержит меньше синего и больше красного света. Тем не менее, результат считается приемлемым и не приводит к утомлению, как в случае с источниками дневного света.

Эксплуатационные параметры

При эксплуатации ламп накаливания важно учитывать условия их использования. Их можно применять в помещениях и на открытом воздухе при температуре не менее –60 и не более +50 град. Цельсия. При этом влажность воздуха не должна превышать 98 % (+20 град. Цельсия). Устройства могут работать в одной цепи с диммерами, предназначенными для регулирования световой отдачи за счет изменения интенсивности света. Это дешевые изделия, которые могут быть самостоятельно заменены даже неквалифицированным человеком.

Виды

Существует несколько критериев для классификации ламп накаливания, которые будут рассмотрены ниже.

В зависимости от эффективности освещения лампы накаливания бывают (от худших к лучшим):

  • вакуумные;
  • аргоновые или азот-аргоновые;
  • криптоновые;
  • ксеноновые или галогенные с установленным отражателем инфракрасного излучения внутрь лампы, что увеличивает КПД;
  • с покрытием, предназначенным для преобразования инфракрасного излучения в видимый спектр.

Намного больше разновидностей ламп накаливания, связанных с функциональным назначением и конструктивными особенностями:

  1. Общее назначение — в 70-х гг. прошлого столетия они назывались «нормально-осветительными лампами». Самая распространенная и многочисленная категория — изделия, применяемые для общего и декоративного освещения. С 2008 года выпуск таких источников света существенно сократился, что было связано с принятием многочисленных законов.
  2. Декоративное назначение. Колбы таких изделий выполняются в форме изящных фигур. Чаще всего встречаются свечеобразные стеклянные сосуды с диаметром до 35 мм и сферические (45 мм).
  3. Местное назначение. По конструкции идентичны первой категории, но питаются от уменьшенного напряжения — 12/24/36/48 В. Обычно применяются в переносных светильниках и приборах, освещающих верстаки, станки и т. п.
  4. Иллюминационные с окрашенными колбами. Зачастую мощность изделий не превышает 25 Вт, а для окрашивания внутренняя полость покрывается слоем неорганического пигмента. Гораздо реже можно встретить источники света, наружная часть которых окрашивается цветным лаком. В таком случае пигмент очень быстро выцветает и осыпается.

  1. Зеркальные. Колба выполнена в специальной форме, которая покрыта отражающим слоем (к примеру, методом распыления алюминия). Данные изделия используются для перераспределения светового потока и повышения эффективности освещения.
  2. Сигнальные. Их устанавливают в светосигнальные изделия, предназначенные для отображения какой-либо информации. Характеризуются низкой мощностью и рассчитаны на продолжительную эксплуатацию. На сегодняшний день практически бесполезны из-за доступности светодиодов.
  3. Транспортные. Еще одна обширная категория ламп, используемых в транспортных средствах. Характеризуются высокой прочностью, устойчивостью к вибрациям. В них применяют специальные цоколи, гарантирующие прочное крепление и возможность быстрой замены в стесненных условиях. Могут питаться от 6 В.
  4. Прожекторные. Высокомощные источники света до 10 кВт, характеризующиеся высокой световой отдачей. Спираль укладывается компактно, чтобы обеспечить лучшую фокусировку.
  5. Лампы, применяемые в оптических приборах, — к примеру, кинопроекционная или медицинская техника.

Специальные лампы

Также существуют более специфические разновидности ламп накаливания:

  1. Коммутаторные — подкатегория сигнальных ламп, применяемых в коммутаторных панелях и выполняющих функции индикаторов. Это узкие, продолговатые и малогабаритные изделия, имеющие параллельные контакты гладкого типа. За счет этого могут помещаться в кнопки. Маркируются как «КМ 6-50». Первое число указывает на вольтаж, второе — ампераж (мА).
  2. Перекальная, или фотолампа. Данные изделия используются в фототехнике для нормированного форсированного режима. Характеризуется высокими световой отдачей и цветовой температурой, но малым сроком эксплуатации. Мощность советских ламп достигала 500 Вт. В большинстве случаев колба матируется. Сегодня практически не используются.
  3. Проекционные. Применялись в диапроекторах. Высокая яркость.

Двухнитевая лампа бывает нескольких разновидностей:

  1. Для автомобилей. Одна нить используется для ближнего, другая — для дальнего света. Если рассматривать лампы для задних фонарей, то нити могут использоваться для стоп-сигнала и габаритного огня соответственно. Дополнительный экран может отсекать лучи, которые в лампе ближнего света могут слепить водителей встречных автомобилей.
  2. Для самолетов. В посадочной фаре одна нить может использоваться для малого света, другая — для большого, но требует внешнего охлаждения и непродолжительной эксплуатации.
  3. Для железнодорожных светофоров. Две нити необходимы для повышения надежности — если перегорит одна, то будет светиться другая.

Продолжим рассматривать специальные лампы накаливания:

  1. Лампа-фара — сложная конструкция для подвижных объектов. Используется в автомобильной и авиационной технике.
  2. Малоинерционная. Содержат тонкую нить накаливания. Применялась в звукозаписывающих системах оптического типа и в некоторых видах фототелеграфа. В наше время используется редко, поскольку есть более современные и улучшенные источники света.
  3. Нагревательная. Применяется в качестве источника тепла в лазерных принтерах и копирах. Лампа имеет цилиндрическую форму, закрепляется во вращающемся металлическом валу, к которому прикладывается бумага с тонером. Вал передает тепло, что приводит к расплыванию тонера.

КПД

Электрический ток в лампах накаливания преобразуется не только в видимый для глаза свет. Одна часть идет на излучение, другая трансформируется в тепло, третья — на инфракрасный свет, который не фиксируется зрительными органами. Если температура проводника составляет 3350 К, то КПД лампы накаливания составит 15 %. Обычная лампа на 60 Вт с температурой 2700 К характеризуется минимальным КПД — 5 %.

Коэффициент полезного действия усиливается степенью нагрева проводника. Но чем выше будет нагрев нити, тем меньше срок эксплуатации. К примеру, при температуре 2700 К лампочка просветит 1000 часов, 3400 К — в разы меньше. Если повысить напряжение питания на 20 %, то свечение усилится в два раза. Это нерационально, поскольку срок эксплуатации сократится на 95 %.

Плюсы и минусы

С одной стороны, лампы накаливания являются самыми доступными источниками света, с другой – характеризуются массой недостатков.

Преимущества:

  • низкая стоимость;
  • нет необходимости в применении дополнительных приспособлений;
  • простота использования;
  • комфортная цветовая температура;
  • устойчивость к повышенной влажности.

Недостатки:

  • недолговечность — 700–1000 часов при соблюдении всех правил и рекомендаций по эксплуатации;
  • слабая световая отдача — КПД от 5 до 15 %;
  • хрупкая стеклянная колба;
  • возможность взрыва при перегреве;
  • высокая пожарная опасность;
  • перепады напряжения существенно сокращают срок эксплуатации.

Как увеличить срок службы

Существует несколько причин, по которым может уменьшиться срок эксплуатации данных изделий:

  • перепады напряжения;
  • механические вибрации;
  • высокая температура окружающей среды;
  • разрыв соединения в проводке.

Вот несколько рекомендаций по продлению срока службы ламп накаливания:

  1. Выберите изделия, которые подходят для диапазона напряжения сети.
  2. Перемещение осуществляйте строго в выключенном состоянии, поскольку из-за малейших вибраций изделие выйдет из строя.
  3. Если лампы продолжают перегорать в одном и том же патроне, то его нужно заменить или починить.
  4. При эксплуатации на лестничной площадке в электрическую цепь добавьте диод или включите параллельно две лампы одной мощности.
  5. На разрыв цепи питания можно добавить устройство для плавного включения.

Технологии не стоят на месте, постоянно развиваются, поэтому сегодня на смену традиционным лампам накаливания пришли более экономичные и долговечные светодиодные, люминесцентные и энергосберегающие источники света. Главными причинами выпуска ламп накаливания остается наличие менее развитых с технологической точки зрения стран, а также хорошо налаженное производство.

Приобретать такие изделия сегодня можно в нескольких случаях — они хорошо вписываются в дизайн дома или квартиры, либо вам нравится мягкий и комфортный спектр их излучения. Технологически — это давно устаревшие изделия.

Лампа накаливания: устройство, принцип работы, виды и технические характеристики

220.guru

виды, характеристики (преимущества и недостатки)

Лампа накаливания – это источник искусственного света, который в процессе работы выделяет много тепла. Внутри ее металлическая спираль, чаще всего из тугоплавкого вольфрама. Этот элемент помещен в колбу, которая заполнена инертным газом, реже – вакуумная. Подобное наполнение не дает окисляться металлу. Такие лампы популярны благодаря низкой цене.

Путь создания

История этих ламп длинная и тернистая, не один создатель принял участие в ее творении. Разделить процесс создания можно на такие этапы:

  1. Изобретение Лодыгина. Русский ученый придумал, как засветить угольный стержень в стеклянном сосуде без доступа воздуха. Проблема была в том, что нить стала быстро перегорать. Чуть позже именно он предложил заменить угольный стержень вольфрамовым.
  2. Вклад Томаса Эдисона. Ему удалось создать недорогую и относительно долговечную модель подобной лампы. Он наладил потоковое производство, изготовить лампу можно было в нужных объемах. Почти всю жизнь он совершенствовал лампу, применяя разные материалы для достижения лучшего эффекта.

Со временем лампы начали наполнять инертными газами, что в разы увеличивало срок эксплуатации.

С момента появления она не очень сильно измениласьк содержанию ↑

Сфера использования

Не так давно лампы накаливания присутствовали в различных сферах жизни, в быту и на предприятиях. Это обуславливается простой их монтажа, эксплуатации и обслуживания. Используются в таких сферах:

  • Общего предназначения для внутреннего и наружного освещения в частных домах, квартирах, офисах.
  • Местного применения – для подсветки рабочих мест.
  • Также есть специальные автомобильные лампы накаливания.
  • Устанавливаются в поездах, на судах, и в самолетах.
  • Миниатюрные ЛН применяются в фонариках, шкалах приборов.
  • Сверхминиатюрные в отдельных медприборах, пультах управления.
  • Также есть коммутационные, маячные, кинопроекционные.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Во многих сферах сегодня используются экономичные лампы, но все же потребительский интерес применения ЛН не снижается.

к содержанию ↑

Характеристики

Лампы накала обладают такими характеристиками:

  1. Разлет мощностей. Зависит от сферы использования, так для бытовых целей применяются лампы от 25 до 150 Ватт, для других – до 1000 Вт.
  2. Нить накаливается до 2000–2800 градусов.
  3. Напряжение – 220–330 В.
  4. Световая отдача – 9–19 Лм/1Вт.
  5. Размеры цоколя – Е 14, Е 27 и Е 40, что соответствует 14, 27 и 40 мм. Тип цоколя – резьбовой и штифтовой. Последний может быть одно- или двухконтактным.
  6. Ресурс функционирования – 1000 часов при оптимальных условиях.
  7. Выделяют в процессе горения много тепла, имеют чувствительность к частым выключениям.
  8. По цене они самые доступные из предложенных в магазинах ламп.
  9. Средний вес – 15 г.
Характеристики ламп разной мощности

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

Конструкция ламп накаливания

Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Интересно! В Америке и Канаде используются другие стандарты цоколей по причине иного напряжения в сети. Для них привычные размеры резьбы в мм: 12, 17, 26 и 39. При отражении размера цоколя на лампочке перед цифрами стоит так же как и у нас литера Е.

Цоколи ламп накаливания

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

  • Специфика конструкции и свойства. «Б» указывает на аргоновую биспиральную ЛН, «В» – на содержание внутри вакуума, «Г» – на то, что в лампу закачан газ, «БК» – биспиральная криптоновая, «МЛ» – молочный цвет колбы, «МТ» – матовая, «О» – опаловая.
  • О назначении лампочки расскажет вторая часть маркировки. «Ж» – железнодорожная, «КМ» – коммутационная, «СМ» – для самолетов, «А» – для автомобилей, «ПЖ» – лампа высокой мощности для использования в прожекторах.
  • Форму обозначают так: «А» – абажур, «Д» – декоративная, «В» – витая.
  • Первые цифры – это номинальное напряжение.

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

Процесс перегорания лампы накаливанияк содержанию ↑

Виды ламп и их функциональное назначение

Существует много ламп накаливания, классификация их происходит по функциональному назначению и конструкционным особенностям.

Общего, местного предназначения

Вплоть до 1970 года их называли нормально-осветительными. Эта группа является самой массовой среди обычных ЛН. Ранее успешно использовались как для общего, так и для декоративного освещения дома, в офисах, других учреждениях. На данный момент во многих странах, в том числе в России, их выпуск ограничивается.

Что касается лампочек местного назначения, то они по конструкции такие же, как и общего, но рассчитаны они на пониженное рабочее напряжение. Использоваться могут в ручных переносных светильниках, для освещения станков, верстаков и т. д.

Лампа общего назначения

Декоративные

Основная их особенность – это фигурная колба, размеры ее могут быть очень разными, также как и расположение внутри нити накаливания. Подобные модели сегодня очень востребованы, но выполняют не так роль освещения, как декора, в особенности в винтажных или ретро дизайн-проектах. Внешний вид подобной лампы очень оригинален.

Варианты исполнения декоративных ламп

Иллюминационные

Колба у них окрашена в разные цвета, в зависимости от целевого использования. Удобны для оснащения иллюминационных установок. Краска в основном наносится на колбу внутри, для этого применяются неорганические пигменты. Значительно реже такие лампы красят снаружи. Мощность их небольшая, варьируется в пределах 10–25 Вт. Необходимый эффект они дают только первое время, далее цвет их меняется, теряет яркость.

Иллюминационная лампа может быть разной мощности

Сигнальные

Применялись в разных светосигнальных приборах. На данный момент из этой сферы их вытесняют светодиодные лампы.

Вариант исполнения сигнальной лампы

Зеркальные

Колба такой лампы имеет специфическую форму, внутри она покрыта тонким слоем алюминия. За счет этого создается зеркальный эффект, также есть прозрачная часть. Основная задача таких ламп – распределение светового потока с целью сосредоточения в пределах определенной зоны. Удобно их использовать в витринах магазинов, в торговых залах. Именно такие лампы используются для обогрева новорожденных птенцов и других животных.

Зеркальная лампа накаливания

Транспортные

Эта группа очень обширная, используется в разных транспортных средствах, для фар или другой подсветки. Востребованы для:

  • Автомобилей.
  • Мотоциклов.
  • Тракторов.
  • Самолетов и вертолетов.
  • Речных и морских судов.

Такие лампы имеют ряд особенностей, среди них:

  1. Высокая прочность.
  2. Стойкость к воздействию вибрации.
  3. Специальные цоколи, за счет чего удается быстро менять вышедшую из строя лампу.
  4. Они рассчитаны на питание от электрической сети ТС.
Автомобильные лампы накаливания

Двухнитевые

Это подтип специальной лампы накаливания, которые используются в:

  • Автомобилях. Так, лампы для фар могут иметь 2 нити накала. Одна из них идет на ближний свет, вторая – на дальний. Аналогичная ситуация и для задних фонарей, только тут отдельные нити для габаритов и для стоп-сигналов.
  • Самолетах. В отдельных моделях в посадочно-рулежной фаре.
  • Ж/д светофорах. Тут двухнитевые лампы – это элемент безопасности и подстраховки, если перегорит одна, то вторая сможет продолжать подавать сигнал.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Есть и другие варианты ламп, например, имеющие специальный спектр излучения, нагревательные, проекционные и другие. Но сегодня они активно вытесняются другими типами лампочек.

Двухнитевая автомобильная лампа накаливанияк содержанию ↑

Преимущества и недостатки

Самые популярные в мире лампы имеют как преимущества, так и много недостатков, особенно с развитием новых технологий освещения. Начать стоит с достоинств, конкретней:

  • Доступная цена. Это самый бюджетный вариант на данный момент. Правда, это касается только стоимости, но не счетов за электроэнергию.
  • Компактные размеры.
  • Практически не страдают от перепадов напряжения в сети.
  • Не требуется время для разогрева.
  • При функционировании на переменном токе мерцания невидимо.
  • Можно использовать электронные диммеры для контроля и экономии потребления электроэнергии.
  • Спектр отлично воспринимается человеческим глазом, тип его непрерывный.
  • Индекс цветопередачи на высоком уровне.
  • Можно использовать в любом температурном режиме, независимо от разновидности.
  • Большой разлет вольтажа, от долей до сотен Вольта.
  • Не требуют специальной утилизации, так как не содержат внутри токсических компонентов. То есть не несут вред людям и другим живым существам.
  • Не нужна дополнительная пускорегулирующая аппаратура, что в сравнении с современными источниками света большой плюс.
  • Во время работы не гудят и не создают радиопомех.
  • Нечувствительность к полярности – она все равно будет работать.
  • Создают минимальный уровень излучения УФ лучей, если сравнивать с другими современными лампочками.
Основные плюсы и минусы

Недостатки:

  1. Низкая световая отдача и непродолжительный период эксплуатации – это самые большие минуса лампочек накала.
  2. Зависимость качества световой отдачи от напряжения.
  3. Выработка огромного количества тепла.
  4. Потребляют много электроэнергии.
  5. Пожароопасность. В зависимости от мощности лампочки, поверхность вокруг нее нагревается вплоть до +330 ⁰C.
  6. Есть риск взрыва лампы, что приведет к травмированию.
  7. Хрупкость.

к содержанию ↑

Вывод

Современные источники света активно вытесняют лампы накаливания их схем использования в быту и в других сферах. Их производство сокращается, но все равно традиционные лампы остаются популярными среди многих потребителей.

📋 Пройдите тест и проверьте ваши знания


Чем заполнена колба лампы накаливания?

Инертным газом

Инертным газом или вакуумом – зависит от конструкции

Ничем, там вакуум

Парами йода

Продолжить >>

В чем недостаток включения лампы через диод?

Увеличивается расход энергии

Лампа заметно мерцает и светит тускло

Сокращается срок службы лампы

Продолжить >>

Почему колбу лампы накаливания делают из кварцевого стекла?

Ее не делают из кварцевого стекла

Кварц лучше пропускает видимый свет

Чтобы колба не расплавилась от раскаленной спирали

Продолжить >>

В чем недостаток включения лампы через конденсатор?

Лампа светит тускло

Конденсатор сильно нагревается

Лампа мерцает

Продолжить >>

В чем недостаток включения лампы через терморезистор?

Лампа мерцает

Светит тускло

Потребляет больше энергии

Резистор сильно нагревается

Продолжить >>

Почему чаще всего лампа сгорает в момент включения?

Из-за самоиндукции спирали на лампе появляется скачок повышенного напряжения

В момент включения через спираль течет очень большой ток

Это миф. Лампы сгорают в любое время

Продолжить >>

Все ли ты знаешь о лампах накаливания

Похоже ты ничего не знаешь про лампы накаливания

Поделитесь своими результатами: Facebook Вконтакте

Все ли ты знаешь о лампах накаливания

Слабенько, побеседуй о лампах со знакомым электриком.

Поделитесь своими результатами: Facebook Вконтакте

Все ли ты знаешь о лампах накаливания

Неплохо, но что-то ты не понял или еще не читал наши статьи?

Поделитесь своими результатами: Facebook Вконтакте

Все ли ты знаешь о лампах накаливания

Ты знаешь всё про лампы накаливания!

Поделитесь своими результатами: Facebook Вконтакте

Пожалуйста, поделитесь этой викториной, чтобы просмотреть ваши результатыю.

Facebook

  НАЧАТЬ СНАЧАЛА!

lampaexpert.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *