Растровые изображения: Растровое и векторное изображение

Содержание

Что такое растровые данные?—Справка | ArcGIS for Desktop

В простейшем варианте растровые данные состоят из матрицы ячеек (или пикселов), которая организована в строки и столбцы (сетку), где каждая ячейка содержит значение, несущее некую информацию, например температуру. Растры – это цифровые аэрофотоснимки, спутниковые снимки, цифровые фотографии и даже сканированные бумажные карты.

Данные хранятся в растровом формате, отображающем явление реального мира:

  • Тематические данные (также именуемые дискретными) могут отображать, например типы землепользования или почвенные данные.
  • Непрерывные данные содержат информацию о таких показателях, как температура, высота над уровнем моря, либо спектральную информацию – в случае с аэрофото- и космическими снимками.
  • Изображения могут представлять собой, в том числе сканированные карты и фотографии зданий.

Тематические и непрерывные растры могут быть отображены как слои данных наряду с другой географической информацией на вашей карте, но обычно они используются в качестве исходных данных для осуществления пространственного анализа с помощью дополнительного модуля ArcGIS Spatial Analyst.

Растровые изображения часто используются в качестве атрибутов в таблицах – они могут быть показаны вместе с вашими географическими данными и использоваться для передачи дополнительной информации о картографических объектах.

Подробнее о тематических и непрерывных данных

Если структура растра является простой, он может применяться для решения большого количества задач. В ГИС направления использования растровых данных можно разделить на четыре основные категории:

  • Растры как базовые карты

    Типичным использованием растровых данных в ГИС является их применение в качестве фонового для показа векторных слоев изображения. Например, ортофотоснимки, показываемые под другими слоями, будут свидетельствовать о том, что слои карты пространственно упорядочены и отображают реальные объекты, а также будут являться источником дополнительной информации. Существуют три основных типа растровых базовых карт – это ортотрансформированные аэрофотоснимки, спутниковые снимки и сканированные карты.

    Растр, показанный ниже, используется в качестве базовой карты для карты дорог.

  • Растры как карты поверхности

    Растры отлично подходят для показа данных, непрерывно изменяющихся в пространстве (поверхностей). Они являются отличным способом хранения непрерывного поля значений в виде поверхности. А кроме того, обеспечивают отображение поверхностей с использованием регулярно расположенных значений. Значения высоты, измеренные с поверхности земли, являются наиболее типичным источником материала для карт поверхностей. Однако для осуществления пространственного анализа могут использоваться и поверхности, отображающие значения количества выпавших осадков, температуры, концентрации, плотности населения и т.д. Расположенный ниже растр отображает рельеф: зеленым цветом показываются низкие участки, а красным, розовым и белым – ячейки, имеющие большие значения высоты.

  • Растры как тематические карты

    Растры отображают тематические данные, которые могут быть получены путем анализа других данных. Типичным применением анализа является классификация спутникового изображения по типам землепользования. Как правило, во время этой процедуры значения яркости пикселов в различных каналах многозональных данных делятся на классы (например, по типам растительности) и классам присваиваются значения категорий. тематические карты могут также быть результатом операций геообработки, комбинирующих данные из различных источников: векторных, растровых и данных terrain. К примеру, можно обработать информацию с помощью модели геообработки с целью создания набора растровых данных, подходящего вам для решения конкретных задач. Ниже приведен пример классифицированного набора растровых данных по типам землепользования.

  • Растры как атрибуты объектов

    Растры, использующиеся в качестве атрибутов объектов, – это цифровые снимки, сканированные документы и рисунки, имеющие отношение к какому-то географическому объекту или местоположению. Слой участков может сопровождаться сканированными юридическими документами, описывающими последние сделки, совершенные с участками, а слой со входами в пещеру – соответствующими изображениями, связанными с точечными объектами.

    Ниже представлено цифровое изображение большого старого дерева, использующееся в качестве атрибута слоя городского ландшафта.

С какой целью данные хранятся в растровом виде?

Иногда у вас не будет другого варианта, кроме как хранить ваши данные в растровом виде: например снимки доступны лишь в растровом представлении. Однако есть масса других объектов (например, точечных) и измерений (например, количества выпавших осадков), которые можно хранить не только в растровом, но и в векторном виде.

Преимущества хранения данных в растровой форме:

  • Простая структура данных – матрица ячеек со значениями координат и иногда связанных с атрибутивной таблицей
  • Предназначенность для расширенного пространственного и статистического анализа данных
  • Возможность отображения непрерывных поверхностей и осуществления их анализа
  • Возможность хранения точек, линий, полигонов и поверхностей
  • Возможность осуществления простых оверлеев с использованием сложных наборов данных

Есть, однако и иные соображения относительно хранения данных в растровом виде, которые, возможно, убедят вас хранить их в векторном виде. Например:

Подробнее об отображении объектов в наборе растровых данных

Основные характеристики растровых данных

В наборах растровых данных каждая ячейка, называемая пикселом, содержит значение. Значения ячеек могут отображать: категории классификации, значения показателей, высоту или спектральную яркость. Категориями классификации могут быть, например, типы землепользования (газоны, леса, дороги и др.) Значение какого-либо показателя несет информацию о земной гравитации, шумовом загрязнении или количестве выпавших осадков. Высота (расстояние) отображает высоту земной поверхности над уровнем моря, которая может использоваться для вычисления крутизны и направления склонов, свойств речных бассейнов и др. Спектральные значения мы видим в спутниковых и аэрофотоснимках – они соответствуют отражательной способности и цвету подстилающей поверхности.

Значения ячеек растра могут быть положительные или отрицательные, целочисленные или с плавающей точкой. Целые значения обычно используются для показа категорий (дискретных данных), а значения с плавающей точкой – для отображения непрерывных полей. Для получения дополнительной информации о дискретных и непрерывных данных см. раздел Дискретные и непрерывные данные. Ячейки также могут иметь значение NoData, означающее отсутствие данных. Для получения информации о NoData обратитесь к разделу NoData в наборах растровых данных.

Растры хранятся в виде упорядоченного списка значений ячеек, например: 80, 74, 62, 45, 45, 34 и т.д.

Территория (или поверхность), отображаемая ячейкой, имеет такую же ширину и высоту, поскольку представляет собой тот же самый участок поверхности, который показан на растре. К примеру, растр высот земной поверхности (т. е. ЦМР) может покрывать территорию в 100 кв. км. Если такой растр состоит из 100 ячеек, каждая ячейка будет отображать 1 кв. км (т.е. участок поверхности размером 1 км х 1 км).

Размеры ячеек могут быть большими или маленькими – в зависимости от того, насколько точно нужно передать поверхность и объекты на ней: это может быть кв. км, кв. футы и даже кв. см. Размер ячейки определяет, насколько качественно или, наоборот, грубо будут отображены объекты на растровом изображении. Чем меньше размер, тем более сглаженным и детализированным будет ваш растр. Однако с увеличением числа ячеек будет увеличиваться и длительность процесса, а также занимаемый растром объем дискового пространства. Если размер ячейки будет слишком большим, может потеряться часть информации и мелкие объекты могут пропасть с изображения. Например, если размер ячейки будет больше, чем ширина дороги, дорога на таком растре может не читаться. На расположенном ниже рисунке вы увидите, как простой полигональный объект будет отображаться в наборах растровых данных с различными размерами пикселов.

Местоположение каждой ячейки определяется строкой и столбцом матрицы, в которых расположена данная ячейка. По существу матрица представляет собой Декартову систему координат, в которой строки матрицы параллельны оси x, а столбцы – оси y. Номера строк и столбцов начинаются с 0. На показанном ниже примере, если растр находится в системе координат проекции Universal Transverse Mercator (UTM) и имеет размер ячейки, равный 100, то ячейка, находящаяся в пятой строке и первом столбце, будет иметь координаты x=300500, y=5900600.

Подробнее о преобразовании набора растровых данных

Часто вам необходимо будет задавать экстент растра. Экстент определяется верхней, нижней, левой и правой координатами прямоугольника, покрытого растром, как показано ниже.

Связанные темы

Отзыв по этому разделу?

Растровые и векторные изображения

Прежде чем браться за изучение программы фотошоп, следует вначале ознакомиться с самыми начальными базовыми понятиями из мира цифровой графики. К таковым относятся виды графики: растровые и векторные изображения. 

Эти два понятия будут постоянно вам встречаться, поэтому давайте разберемся, что это такое и в чем между ними разница.

Растровые изображения

Растровые изображения это основной и самый популярный вид графики. Львиная часть изображений, которые вы встречаете в интернете, это именно растр. Ваш фотоаппарат, смартфон и любой другой гаджет или прибор делают снимки, которые уже относятся к растру. Это технически самый простой и доступный способ отрисовки графики.

Как любой живой организм состоит из мельчайших частиц — клеток, так растровое изображение состоит из пикселей.

Пиксели — это крошечные элементы, квадратной формы, которые содержат в себе информацию о цвете, яркости и прозрачности. Подробнее о пикселях читайте здесь.

Программа фотошоп была создана для работы именно с растровыми изображениями. Все возможности, инструменты и механизмы программы разработаны для редактирования пикселей изображения.

Почему этот вид графики такой популярный?

Дело в том, что в силу своей структуры, растровые изображения могут отображать плавные переходы цвета, градиенты. Края объектов на фотографиях могут быть плавными. Цвет передается четко, близким к реальному, а это именно то, что нужно, чтобы передать наш реальный мир в виде фотографии.

Растровые изображения обычно хранятся в сжатом виде. В зависимости от типа сжатия может быть возможно или невозможно восстановить изображение в точности таким, каким оно было до сжатия (сжатие без потерь или сжатие с потерями). Так же в графическом файле может храниться дополнительная информация: об авторе файла, фотокамере и её настройках, количестве точек на дюйм при печати и др.

Несмотря на преимущества, у растра есть серьезные недостатки:

1. В связи с тем, что каждый пиксель содержит в себе достаточно много информации, то когда мы говорим о миллионах пикселей в одном изображении, становится ясно, какой объем информации будет закодирован в памяти. Это приводит к увеличению размеров файла. Поэтому, чем больше пикселей в фотографии, тем больше она весит.

2. Сложности масштабирования изображения. При увеличении появляется зернистость и пропадает детализация. При уменьшении фотографии, в результате сложных преобразовательных процессов, происходит потеря пикселей. При этом детализация изображения пострадает не так сильно, как при увеличении, но этот процесс уже необратимый, то есть, если потребуется вновь увеличить изображение, оно сильно потеряет в качестве.

Векторные изображения

Векторные изображения состоят из элементарных геометрических объектов, таких как: точки, линии, круги, многоугольники и так далее.

В основе их контуров лежат математические уравнения, сообщающие устройствам как рисовать отдельные объекты. Эти объекты составляют фигуры, а уже они, в свою очередь, заполняются цветом.

Векторное изображение — это набор координат вершин, образующих простейшие геометрические фигуры, из которых складывается итоговое изображение. 

Такая графика создается непосредственно человеком с помощью специализированных программ, например, Adobe Illustrator и Corel Draw. Нужно обладать специальными навыками пользования этими программами, а также умением рисовать. Понятное дело, это доступно не многим людям, поэтому такой вид графики не так широко распространен.

Векторные изображения преимущественно создаются для индустрии рекламы и дизайна.

Достоинства векторной графики:

1. Возможность изменять масштаб изображений без потери качества до любых размеров, при этом вес изображения не увеличивается. При изменении размеров происходит пересчёт координат и толщины линий, а затем построение объектов в новых размерах.

2. Векторное изображение не хранит в себе тонны информации, поэтому вес такого файла будет в разы меньше растра.

3. Возможность трансформации изображения из вектора в растр без потери качества и каких-либо сложностей. Это может сделать фотошоп в два щелчка мыши.

Недостатки:

Векторная графика не годится для создания реалистичных картин и фотографий. Она сильно ограничена в передаче плавных переходов и градиентов между цветами. В результате этого все цвета и линии сильно контрастируют.


Фотошоп хоть и работает с растровой графикой, но в своем наборе инструментов содержит и векторные элементы. Прежде всего это инструмент «Текст». При добавлении текста к изображению в фотошопе, создается отдельный текстовый слой. До тех пор пока этот слой живет самостоятельно, он является векторным элементом. Его можно растягивать до любых размеров и текст всегда будет четким.

Произвольные фигуры фотошопа также представляют из себя простейшие векторные изображения.

Помимо всего этого, хоть фотошоп не может создавать векторную графику, он может открывать ее. Тем самым можно добавлять заранее подготовленные дизайн-объекты и масштабировать их без потери качества.

Таким образом, подведем короткие выводы:

— растровые изображения фотореалистичные, а у векторных изображений всегда видно, что они нарисованы;

— масштабирование изображений очень важная возможность, которой нужно уметь пользоваться при работе с фотошопом. Для этого надо знать как и когда теряется качество графики и стараться не допустить этого. Тогда ваши будущие работы будут из тех, где приятно любоваться самыми мелкими деталями и восхищаться насколько они классно нарисованы.