Технология получения поливинилхлорида – , —

Содержание

Технология производства поливинилхлорида (ПВХ)

Поливинилхлорид (ПВХ) – широко применяемый полимер-термопласт, синтезируемый путем полимеризации винилхлорида в присутствии хлорида натрия. Материал находит широкое применение при изготовлении искусственных волокон и кож, пленок, профилей для светопрозрачных конструкций, а также используется для решения многих других задач. 

Специфика производства поливинилхлорида

Производство является сложным и наукоемким, всего существует три основных метода полимеризации винилхлорида, которые мы рассмотрим далее. Как и в случае с полиэтиленом, для которого свойства готового полимера напрямую зависят от параметров полимеризации, свойства готового ПВХ определяются применяемой технологией производства. Получаемая разными технологиями продукция имеет различные сферы применения и свойства. 

Потому в современных условиях полимеры винилхлорида делятся на две основных группы: суспензионные и эмульсионные.

Методы изготовления ПВХ

  • Полимеризация в массе. Устаревшая технология, на данный момент в промышленных масштабах внедряемая только французской компанией Peshine Sant Gobain. Требует строгого соблюдения температурного режима. Получаемый продукт имеет относительно низкое качество, так как содержит немало остаточного винилхлорида, а также является неоднородным.
  • Полимеризация в эмульсии. Производство эмульсионного ПВХ (ПВХ-Э) предполагает водную среду, с добавлением поверхностно-активных веществ, которые выступают эмульгаторами. Для инициаторов процесса используются пероксиды либо гидроксиды. Главной особенностью процесса является использование таких инициаторов, которые не растворяются в винилхлориде, но растворяются в воде. В ходе полимеризации образовывается латекс, который подлежит последующей дегазации, нейтрализации, стабилизации, после чего из него выделяется чистый полимер. 
  • Полимеризация в суспензии. Самый распространенный метод полимеризации, обеспечивающий точное управление параметрами получаемого вещества при помощи компьютера. Суспензионный ПВХ применяется для изготовления профилей для пластиковых окон и других изделий с повышенными требованиями к качеству. Технология предполагает полимеризацию в водной среде с добавлением метилцеллюбозы или других стабилизаторов, а также инициаторов (ПДЭГ, АЦСП, порофор и др). После прохождения реакции полимеризации полученная суспензия дегазируется, усредняется, центрифугируется и сушится. Высушенный продукт просеивается и фасуется.

Как эмульсионный, так и суспензионный ПВХ пользуются стабильным спросом в России и находят широкое применение в разных сфера промышленной деятельности.

unitreid-group.com

Поливинилхлорид (ПВХ) — Энциклопедия полимеров

Поливинилхлорид (ПВХ) [-СН2-СНСl-]n  – это высокомолекулярный хлорсодержащий

полимер, элементарные звенья в макромолекуле которого в основном соединены по типу «голова к хвосту».

Поливинилхлорид является термопластичным полимером с температурой стеклования 70—80 °С и температурой вязкого течения 150—200 °С в зависимости от молекулярной массы. Степень полимеризации ПВХ промышленных марок колеблется от 400 до 1500.

Свойства и назначение поливинилхлорида в значительной мере определяются способом его получения. Свойства ПВХ также можно изменять путем химической модификации. Доступность исходного сырья (винилхлорида), относительно несложные методы получения, ценные технические свойства обусловили быстрый рост и большие масштабы его производства.

Пластические массы на основе поливинилхлорида нашли широкое применение в электротехнической и химической промышленности, в строительстве, а также в других областях техники и в быту.


 Краткий исторический очерк

В 1835 г. Реньо обнаружил способность газообразного винилхлорида под действием света превращаться в порошок. В 1872 г. полимеризация винилхлорида была исследована Бауманом. А через  40 лет Остромысленский и Клатте предложили использовать фотополимеризацию как промышленный метод получения поливинилхлорида. Позднее были разработаны способы полимеризации винилхлорида под влиянием инициаторов, распадающихся при нагревании на свободные радикалы. Промышленный синтез поливинилхлорида в водной эмульсии был впервые осуществлен в 1930 г. Следующим важным шагом явилась разработка и осуществление в промышленности суспензионной полимеризации винилхлорида. Сравнительно недавно был освоен промышленный метод полимеризации винилхлорида в массе.


 Полимеризация винилхлорида

Поливинилхлорид (ПВХ) получают радикальной полимеризацией винилхлорида:

В промышленности наибольшее распространение получил суспензионный метод. Инициирование процесса осуществляется свободными радикалами, образующимися при гомолитическом распаде пероксидов или азосоединений. Первичный радикал присоединяется главным образом к метиленовой группе винилхлорида:

В связи со склонностью поливинилхлорида к дегидрохлорированию при температурах выше 75 °С возможна передача цепи на полимер за счет отрыва аллильного атома хлора от атома углерода, который находится рядом с двойной связью, образовавшейся вследствие частичного дегидрохлорирования полимера:

В результате этой реакции возникают малоактивные аллильные радикалы, вызывающие замедление полимеризации. Для предотвращения дегидрохлорирования и получения

ПВХ с теоретическим содержанием хлора желательно вести процесс полимеризации при температурах не выше 70—75 °С.

Радикалы винилхлорида вследствие их высокой активности легко вступают во взаимодействие с различными примесями, содержащимися в мономере даже в незначительных количествах.

Некоторые из примесей, например ацетилен, реагируют как агенты передачи цепи и могут вызывать образование малоактивных радикалов, замедляя полимеризацию. В присутствии других примесей происходит обрыв цепи.

Реакция передачи цепи часто используется для регулирования молекулярной массы полимера. При этом в полимеризационную среду вводят вещества, способные участвовать в передаче цепи, — регуляторы. Регуляторы выбирают так, чтобы образующиеся в результате передачи цепи радикалы были достаточно активными, в противномслучае используемые регуляторы замедляют или даже ингибируют полимеризацию.

Во всех случаях получения поливинилхлорида кислород оказывает отрицательное влияние на ход полимеризации и свойства полимера. Наличие кислорода в системе обусловливает индукционный период процесса полимеризации, уменьшение скорости полимеризации, понижение средней молекулярной массы ПВХ, появление разветвленности, уменьшение термической стабильности ПВХ, ухудшение его совместимости с пластификаторами.

Поэтому содержание кислорода выше 0,0005—0,001% (по отношению к винилхлориду) нежелательно.

При полимеризации винилхлорида выделяется большое количество тепла 1466 кДж/кг, что существенно влияет на технологию получения полимера.

При полимеризации винилхлорида в массе полимер выпадает в осадок в виде твердой фазы вследствие нерастворимости ПВХ в мономере. При этом сначала происходит увеличение скорости реакции от начала процесса до высоких степеней конверсии мономера, а затем ее медленное уменьшение.

Возрастание скорости полимеризации обусловлено образованием твердой фазы. В результате передачи цепи на полимер на выпавших из жидкой фазы макромолекулах образуются активные центры, способные продолжать полимеризацию. Вследствие малой подвижности закрепленных на поверхности полимера  растущих цепей скорость обрыва цепи уменьшается, тогда как скорость роста остается высокой из-за большой подвижности молекул мономера. Поэтому с появлением твердой фазы скорость полимеризации возрастает.

На возрастание скорости полимеризации винилхлорида влияет также способность полимера набухать в мономере. Полимеризация протекает в набухших частицах полимера, в которых скорость передвижения макрорадикалов, вероятность их столкновения и бимолекулярного обрыва цепи мала. Подвижность молекул мономера в набухших частицах и скорость роста полимерных цепей остается большой.

Описанное выше явление автокатализа при полимеризации винилхлорида в гетерогенных условиях часто называют гель-эффектом. Однако это явление при полимеризации винилхлорида не аналогично типичному гель-эффекту, наблюдаемому в тех случаях, когда образующийся полимер растворим в собственном мономере.


 Свойства поливинилхлорида

Поливинилхлорид представляет собой белый порошок плотностью 1350—1460 кг/м3. Молекулярная масса продукта промышленных марок 30000—150000. Степень кристалличности достигает 10%.

Поливинилхлорид характеризуется значительной полидисперсностью, возрастающей с увеличением степени превращения.

Среднечисловую молекулярную массу ‾Мn (близкую по значению к среднемассовой ¯Mw) можно рассчитать по значению характеристической вязкости [η]:

На практике молекулярную массу поливинилхлорида характеризуют константой Фикентчера (Кф):   Kф=1000k

Коэффициент k определяется по уравнению :

где ηотн — относительная вязкость раствора поливинилхлорида в циклогексаноне (обычно 0,5 или 1 г полимера на 100 см3 растворителя).

Ниже приводится константа Фикентчера Кф, характеризующая среднюю молекулярную массу поливинилхлорида, полученного различными способами:

Способ получения ПВХ
Константа Фикентчера Кф
Суспензионный47-76
В массе56-72
Эмульсионный 54 -77

 Приведенная вязкость (ηпр), константа Фикентчера (Кф) и среднечисловая молекулярная масса (¯Мn) поливинилхлорида связаны следующим образом:

ηпр1,801,982,202,442,70
Кф5560657075
Мn50 00065 00080 00090000100 000

 Благодаря высокому содержанию хлора (около 56%) поливинилхлорид не воспламеняется и практически не горит. При

130—150 °С начинается медленное, а при 170 °С более быстрое разложение поливинилхлорида, сопровождающееся выделением хлористого водорода.

Поливинилхлорид нерастворим в мономере (винилхлориде), в воде, спирте, бензине и многих других растворителях. При нагревании он растворяется в тетрагидрофуране, хлорированных углеводородах, ацетоне и др.

Поливинилхлорид обладает хорошими электроизоляционными и теплоизоляционными свойствами, а также высокой стойкостью к действию сильных и слабых кислот и щелочей, смазочных масел и др.

Под действием энергетических и механических воздействий в поливинилхлориде протекают реакции дегидрохлорирования, окисления, деструкции, структурирования, ароматизации и графитизации. Основная реакция, ответственная за потерю полимером эксплуатационных свойств, — выделение

НСl.

Для предотвращения разложения в поливинилхлорид вводят стабилизаторы. В качестве антиоксидантов применяют производные фенолов  и производные карбамида.

При термической пластификации при 160 °С поливинилхлорид превращается в застывший блок, жесткий и прочный при комнатной температуре.

Поливинилхлорид хорошо совмещается с пластификаторами.

Поливинилхлорид широко используется в технике как антикоррозионный материал. Благодаря хорошим электроизоляционным свойствам он применяется для кабельной изоляции и для других целей.


Читайте также:


Дополнительную информацию по теме поливинилхлорида (новости, аналитика, прогнозы, литература и прочее) на портале MPlast.by вы можете найти на странице темы – ПВХ.


 

Список литературы:
Коршак В. Б. Прогресс полимерной химии. М., Наука, 1965, 414 с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. Изд. 2-е. М. — Л., Химия, 1966. 768 с.
Николаев А. Ф. Технология пластических масс. Л., Химия, 1977. 367 с.
Кузнецов Е. В., Прохорова И. П., Файзулина Д. А. Альбом технологических схем производства полимеров и пластмасс на их основе. Изд. 2-е. М., Химия, 1976. 108 с.
Получение и свойства поливинилх лор ид а/Под ред. Е. Н. Зильбермана. М., Химия, 1968. 432 с.
Лосев И. Я., Тростянская Е. Б. Химия синтетических полимеров. Изд. 3-е. М., Химия, 1971. 615 с.
Минскер К. С., Колесов С. В., Заиков Г. Е. Старение и стабилизация полимеров на основе винилхлорида. М., Химия, 1982. 272 с.
Хрулев М. В. Поливинилхлорид. М., Химия, 1964. 263 с.
Минскер /С. С, Федосеева Г. 7. Деструкция и стабилизация поливинилхлорида. М., Химия, 1979. 271 с.
Штаркман Б. Я. Пластификация поливинилхлорида. М., Химия, 1975. 248 с.
Фторполимеры/Пер. с англ. Под ред. И. Л.Кнунянца и Б. А. Пономаренко. М., Мир, 1975. 448 с.
Чегодаев Д. Д.., Наумова 3. К, Дунаевская Ц. С. Фторопласты. М.-Л.,Госхимиздат, 1960. 190 с.
Автор: Коршак В.В.
Источник: Коршак В.В, Технологии пластических масс, 3-е издание, 1985 год
Дата в источнике: 1985 год

mplast.by

Вопрос 22. Пвх методы получения.

трмопластичный полимер. Раств. в дихлорэтане, циклогексаноне, хлор- и нитробензоле, ТГФ, ДМФА, ограниченно-в бензоле, ацетоне, не раств. в воде, спиртах, углеводородах. Стоек в р-рах щелочей, K-T, солей; атмосфере- и грибостоек. Трудногорюч. При т-рах выше 1200C начинается заметное отщепление HCl, протекающее количественно при 300-3500C. При более высоких т-рах наблюдается разрыв полимерных цепей с образованием углеводородов. Физ.-хим. св-ва поливинилхлорида зависят от способа, рецептуры и режима его получения. Важный показатель качества поливинилхлорида, определяющий его назначение,-величина К (константа Фикентчера), характеризующая среднюю мол. массу поливинилхлорида.

Поливинилхлорид (ПВХ) сравнительно легко получается полимеризацией винилхлорида в присутствиии перекисей или под воздействием УФ-излучения.

Полимеризация в блоке

Вследствие непрерывного перемешивания реакционной смеси, полимеризация в блоке сопровождается образованием порошкообразного полимера. В качестве инициатора реакции используют азодиизобутиронитрил. Процесс ведут непрерывным методом во вращающейся герметической емкости с помещенными внутри шарами для измельчения полимера. Полученный ПВХ имеет высокие диэлектрические характеристики и может быть использован для получения прозрачных изделий.

Полимеризация в суспензии

При суспензионной полимеризации винилхлорид диспергируют в воде в присутствии гидрофильного коллоида (ПВС или желатина) и растворимого в воде инициатора. В качестве инициатора применяют азодиизобутиронитрил, перекись бензоила и ряд других перекисей и азосоединений.

Обычно для производства суспензионного ПВХ используется следующая рецептура, масс.ч.

Винилхлорид 30

Вода 60

ПВС(5% раствор) 1

Перекись бензоила 0,04.

Процесс проводят при температуре 40-60С в течение 60 часов. Давление в процессе полимеризации изменяется от 0,6 МПа до 0,12 МПа. Суспензия отжимается на автоматической центрифуге, затем просушивается в сушилке непрерывного действия горячим воздухом с температурой 80-100С. Высушенный полимер подвергается измельчению.

Полимеризация в эмульсии

При эмульсионной полимеризации винилхлорид добавляют к воде, содержащей небольшое количество эмульгатора (ПАВ). В качестве инициатора используют водорастворимое вещество, способное к образованию свободных радикалов, например, перекись водорода или персульфаты щелочных металлов.

Вопрос 23. Проблемы переработки пвх. Термостабилизаторы.

Поливинилхлорид является одним из самых массовых полимерных материалов по выпуску и использованию в народном хозяйстве. Сложность переработки ПВХ в изделие состоит в том, что температура переработки его составляет 145-170С, а уже при 140С наблюдается медленная деструкция, сопровождающаяся выделением хлористого водорода. Технологический процесс переработки ПВХ протекает нормально если при температуре 170С термическая устойчивость при изготовлении пленок составляет не менее 70 мин, а при изготовлении труб и профилей не менее 30 мин. Термостабильность ПВХ можно повысить, вводя термостабилизаторы. Термостабилизаторы способны повышать температуру деструкции или на определенный срок замедлять процессы деструкции.

Для ПВХ известен ряд термостабилизаторов, различающихся по принципу действия. К первой группе относятся вещества, способные адсорбировать хлористый водород, и предотвращать тем самым его воздействие на полимер. Вторая группа представляет собой вещества, способные вступать в химическое взаимодействие с выделяющимся хлористым водородом, третья – соединения, предотвращающие полимер от действия кислорода воздуха.

Из неорганических стабилизаторов наибольшее распространение получили двухосновной фосфит свинца Pb2HPO3, карбонат свинца Pb(CO3)2, основной карбонат свинца 2PbCO3Pb(OH)2, свинцовый глет, свинцовый сурик Pb3O4, сода Na2CO3, силикаты натрия Na2SiO3 и свинца PbSiO3, фосфаты натрия Na3PO4 , Na2HPO4 ,NaH2PO4 .

Из органических соединений в качестве стабилизаторов используют меламин, производные карбамида и тиокарбамида, сложные эфиры.

К металлорганическим стабилизаторам, как правило, относят соли жирных кислот.

studfiles.net

Производство ПВХ + Технология изготовления для 2019

Поливинилхлорид (ПВХ, PVC) — это бесцветная, прозрачная пластмасса, термопластичный полимер винилхлорида. Отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям. На воздухе не горит, обладает малой морозостойкостью (−15 °C). Нагревостойкость: +66 °C.

  • Химическая формула: [-CH2-CHCl-]n.
  • Другие названия: полихлорвинил, винил, вестолит, хосталит, виннол, корвик, сикрон, джеон, ниппеон, сумилит, луковил, хелвик, норвик.

ПВХ является достаточно старым материалом, который довольно активно используется в области под названием строительство. Словосочетание профиль ПВХ – достаточно сильно и, бесспорно, прочно обосновался в нашей бурной жизни.

Именно в нашей статье вы узнаете огромное количество сведений о таком известном профиле как ПВХ, ознакомитесь с деталями производства ПВХ. Расшифровуется представленная аббревиатура довольно быстро и легко и, бесспорно, просто элементарно: это исключительно аббревиатура полезнейшего, бесспорно, материала – поливинилхлорида.

Не лишним будет отметить, а также предоставить вашему довольно особому вниманию наличие некоторых промышленных свойств, которые имеют чрезвычайно большое значение. К ним относятся (в самом обязательном порядке):

  • Погодостойкость. Именно ПВХ проявляет полнейшую устойчивость абсолютно ко всем достаточно агрессивным факторам существующей именно сейчас внешней среды. В результате этого он выступает в роли самого распространенного и востребованного полимера именно для изготовления различных кровельных конструкций-покрытий.
  • Универсальность. ПВХ это такой материал, который отличается наличием и гибкости и некоторой жесткости;
  • Огнезащищенность. Этот материал является весьма трудновоспламеняемым материалом. Это достигается с помощью наличия хлора в самой его молекуле;
  • Долговечность. Срок службы достаточно большой и значительный. Речь идет о временном промежутке до 100 лет и более;
  • Гигиеничность. ПВХ выступает в роли самого распространенного полимера, целью которого является изготовление качественных изделий исключительно медицинского назначения, в том числе и удобных контейнеров для качественного хранения крови и плазмы;
  • Энергоэффективность. Поливинилхлорид имеет в своем арсенале достаточно высокую теплотворную способность. В процессе утилизации в мусоросжигателях выделяется большое количество тепла, необходимого для обогрева жилых и промышленных зданий. Особое значение имеет то, что при всем этом окружающая среда абсолютно не загрязняется.

Помимо перечисленного выше имеют место и некоторые барьерные свойства:

  • ПВХ обладает весьма низкой проницаемостью исключительно по отношению к различным жидкостям, парам и газам.
  • Экологичность. ПВХ значительно оказывает влияние на значительную экономию невозобновляемого природного сырья. Если говорить о процентном отношении, то только 43% приходится на производные нефти.
  • Возможность утилизации. Наилучшим образом, представленный материал является пригодным именно для качественной вторичной переработки.
  • Экономичность. В настоящее время ПВХ выступает в качестве самого дешевого и доступного многим крупнотоннажного полимера, который в большинстве случаев оказывает обеспечение для многих изделий самое лучшее соотношение цена-качество.

Сфера использования этого строительного материала достаточно широкая. Ее весьма активно используют в электротехнической, лёгкой, пищевой промышленности, тяжёлом машиностроении, судостроении, сельском хозяйстве, медицине, в производстве самых разнообразных стройматериалов.

Технология производства ПВХ

Процесс производства ПВХ – достаточно трудоемкий и тяжелый. Именно этому процессу необходимо уделить чрезвычайно большое внимание.

На сегодняшний день производство ПВХ, в целом осуществляется исключительно из нефтепродуктов. Тем не менее, целых 56% производства ПВХ, как и прежде, приходится на использование самой соляной кислоты – это продукт, получение которого становится возможным вполне реальным исключительно из каменной соли, а еще 44% — из этилена, который получают только лишь методом, так называемого парофазного крекирования с использованием нафты — одного из компонентов нефти.

Таким образом, вполне осознанно и обдуманно можно сделать самый полноценный вывод только о том, что абсолютно все производство зависит только лишь от самого способа получения целого ряда других исходных материалов, которые имеются в группе каждого из вас?

Видео всего процесса (Eng.):

Не лишним будет узнать о способах качественного производства ПВХ-материалов.

Виды:

  • Экструзия. Осуществляется качественная обработка, а также переработка исключительно в готовое вещество.
  • Метод вальцевания. Суть этого способа состоит исключительно в том, что наблюдается постоянное разрушение, а также направление самых различных качественных волокон пластиката исключительно вдоль самого процесса вальцевания. Благодаря именно этому методу довольно активно добиваются значительного, а также отличного качества смол с пленки винипласта.
Загрузка…

moybiznes.org

Производство поливинилхлорида в массе — Энциклопедия MPlast

При полимеризации винилхлорида в массе процесс протекает в среде жидкого мономера, в котором предварительно растворен инициатор.

В качестве инициаторов применяются:

  • диэтилгексилперкарбонат (ПДЭГ),
  • ацетанилциклогексилсульфонилпероксид (АЦСП),
  • динитрилазобисизомасляной кислоты (порофор) и др.

Для улучшения условий полимеризации винилхлорида и получения полимера с необходимыми свойствами в систему вводят 0,05—0,1% акцепторов хлористого водорода (стеараты металлов) и другие добавки. Частицы поливинилхлорида зарождаются только на начальной стадии процесса (порядка 1013 частиц, на 1 моль винилхлорида). В дальнейшем происходит рост частиц вследствие полимеризации мономера, адсорбированного на их поверхности. В результате передачи цепи на полимер в макромолекуле поливинилхлорида в среднем на каждые 50— 100 мономерных звеньев образуется по одной боковой цепи. Поэтому поливинилхлорид, полученный в массе, имеет более разветвленное строение, чем поливинилхлорид, полученный другими методами (суспензионным, эмульсионным,  полимеризацией в растворе).

Трудности при осуществлении полимеризации винилхлорида в массе в промышленных условиях связаны с отводом теплоты реакции. Условия теплоотвода особенно ухудшаются вследствие того, что при увеличении степени превращения мономера постепенно исчезает жидкая фаза и образуются крупные агрегаты полимера. Агрегаты продолжают расти, все теснее примыкая друг к другу, частично деформируются и образуют непрочную пористую массу. При более глубоких конверсия на стенках автоклава образуется твердый налет, затрудняющий отвод тепла через стенки, что приводит к местным перегревам и получению неоднородного полимера. Поэтому полимеризацию винилхлорида в массе в обычном автоклаве можно осуществлять до степени конверсии мономера не выше 20—25%.

Основная технологическая особенность промышленного способа полимеризации винилхлорида в массе заключается в проведении полимеризации в две стадии:

  • в получении форполимера в обычном автоклаве
  • и завершении процесса в горизонтальном или вертикальном цилиндрическом автоклаве, конструкция которого обеспечивает интенсивное перемешивание образующегося полимера и отвод тепла.

Процесс начинают в обычном автоклаве при 30—70 °С в присутствии инициаторов (ПДЭГ или АЦСП), растворимых в диметилфталате, или других инициаторов, растворимых в мономере, при интенсивном перемешивании до 10%-ной конверсии мономера. Образовавшуюся суспензию полимера в мономере для завершения полимеризации подают в основной автоклав с мешалкой специальной конструкции, в котором содержатся свежий винилхлорид, инициатор и акцептор хлористого водорода. Конверсия мономера в основном полимеризаторе составляет 70—85% в зависимости от марки ПВХ.

Незаполимеризовавшийся винилхлорид поступает через фильтр в конденсатор для сбора мономера. Поливинилхлорид пневмотранспортом всасывающего типа в смеси с воздухом подается в бункер-циклон, где улавливается. Таким образом, при использовании метода получения ПВХ в массе исключаются стадии фильтрации и сушки полимера, вследствие чего технологическая схема упрощается и становится экономичнее по сравнению с суспензионным и эмульсионным методами, несмотря на меньшую степень конверсии мономера и затруднения, связанные с отводом тепла.

Получение поливинилхлорида в массе в промышленности позволяет производить чистый ПВХ, не загрязненный эмульгатором, защитным коллоидом и другими веществами, обладающий высокими электроизоляционными характеристиками.

В промышленности применяют горизонтальный или вертикальный полимеризаторы емкостью 20—50 м3, снабженные рубашкой для обогрева и трехлопастной скребковой мешалкой или ленточноспиральной мешалкой для перемешивания реакционной массы. Вал мешалки изготавливается полым, внутрь вала подается вода для дополнительного съема (91,6 кДж/моль) теплоты реакции.

Полимеризацию винилхлорида проводят периодическим способом при 40—70 °С.

Технологический процесс производства поливинилхлорида в массе состоит из стадий:

  • предварительной полимеризации,
  • окончательной полимеризации винилхлорида,
  • просеивания и измельчения поливинилхлорида, регенерации возвратного винилхлорида.

Технологическая схема периодического процесса получения поливинилхлорида приведена на рисунке 1.

В реактор-автоклав 1 подают инициатор (0,05—0,1% от массы мономера) и из емкости 2 через счетчик или весовой мерник загружают жидкий винилхлорид.

В рубашку реактора подают горячую воду для разогрева реакционной массы в течение 1—1,5 ч, затем при интенсивном перемешивании и отводе теплоты реакции проводят полимеризацию винилхлорида до 10%-ной степени конверсии при давлении 0,9—1,1 МПа. Образующуюся суспензию полимера в мономере сливают в реактор-автоклав 3, в котором ее смешивают с новой порцией мономера, инициатором, акцептором хлористого водорода и другими добавками.

В реакторе-автоклаве, снабженном перемешивающим устройством с переменной частотой вращения, полимеризация продолжается до 60—85%-ной конверсии. Температура и давление поддерживаются регулированием температуры циркулирующей в рубашке воды. Продолжительность полимеризации винилхлорида в массе – 8—11 ч. Незаполимеризовавшийся винилхлорид сдувается через фильтр 4 в конденсатор 5. Сконденсированный винилхлорид стекает в емкость 2. Из автоклавов 1 и 3 перед их загрузкой тщательно удаляют воздух вакуумированием или продувкой азотом. Полученный поливинилхлорид при помощи воздуха выгружается из реактора в виде пылевоздушной смеси в бункер-циклон 6, в котором он отделяется от воздуха и направляется на рассев. Порошкообразный поливинилхлорид проходит через грохот 7 и бункер-приемник 8, просеивается на сите 11, собирается в бункер-приемник 12 и поступает на упаковку.

Крупная фракция продукта из грохота 7 поступает в дробилку 10, в бункер-приемник 14, порошок с нестандартным размером частиц подается в мельницу 15. Просеянный поливинилхлорид собирается в бункере-приемнике 18, откуда поступает на упаковку.


Читайте также:


 

Список литературы:
Коршак В. Б. Прогресс полимерной химии. М., Наука, 1965, 414 с.
Николаев А. Ф. Синтетические полимеры и пластические массы на их основе. Изд. 2-е. М. — Л., Химия, 1966. 768 с.
Николаев А. Ф. Технология пластических масс. Л., Химия, 1977. 367 с.
Кузнецов Е. В., Прохорова И. П., Файзулина Д. А. Альбом технологических схем производства полимеров и пластмасс на их основе. Изд. 2-е. М., Химия, 1976. 108 с.
Получение и свойства поливинилх лор ид а/Под ред. Е. Н. Зильбермана. М., Химия, 1968. 432 с.
Лосев И. Я., Тростянская Е. Б. Химия синтетических полимеров. Изд. 3-е. М., Химия, 1971. 615 с.
Минскер К. С., Колесов С. В., Заиков Г. Е. Старение и стабилизация полимеров на основе винилхлорида. М., Химия, 1982. 272 с.
Хрулев М. В. Поливинилхлорид. М., Химия, 1964. 263 с.
Минскер /С. С, Федосеева Г. 7. Деструкция и стабилизация поливинилхлорида. М., Химия, 1979. 271 с.
Штаркман Б. Я. Пластификация поливинилхлорида. М., Химия, 1975. 248 с.
Фторполимеры/Пер. с англ. Под ред. И. Л.Кнунянца и Б. А. Пономаренко. М., Мир, 1975. 448 с.
Чегодаев Д. Д.., Наумова 3. К, Дунаевская Ц. С. Фторопласты. М.-Л.,Госхимиздат, 1960. 190 с.
Автор: Коршак В.В.
Источник: Коршак В.В, Технологии пластических масс, 3-е издание, 1985 год
Дата в источнике: 1985 год

mplast.by

Производство поливинилхлорида и его основные свойства

Содержание

Введение

1. Исходные вещества

1.1 Характеристика исходных продуктов

1.2 Химические свойства ХВ

2. Физика — химия получения ПВХ. Методы получения

2.1 Методы получения поливинилхлорида

2.2 Закономерности полимеризации винилхлорида

2.3 Гель-эффект

2.4 Передача цепи и молекулярный вес полимера

3. Технология получения ПВХ

3.1 Производство поливинилхлорида в массе

3.2 Производство жесткого поливинилхлорида

3.3 Сведенья о технике безопасности при производстве ПВХ

4. Свойства ПВХ

4.1 Физико-механические свойства ПВХ

4.2 Химические свойства ПВХ

Поливинилхлорид (ПВХ) — термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена.

Занимает одно из ведущих мест среди полимерных продуктов, выпускаемой мировой промышленностью. На базе этого полимера получают свыше 3000 видов материалов и изделий, которые используются для самых разнообразных целей и завоевывают с каждым годом все новые области применения.

Впервые хлористый винил был получен в 1935 г. Реньо обработкой дихлорэтана спиртовым раствором щелочи, хотя полагают, что это. Собственно, являлось повторением более ранних работ Либиха. В 1912 году был выдан первый патент на промышленное использование винил-галогенидов для получения полимеров. Однако товарным продуктом ПВХ стал лишь в 1935 г. Полимер требовал специфического подхода к его переработке и преодоления ряда сложных задач, связанных с длительной эксплуатацией в естественных условиях материалов или изделий на его основе, что в то время казалось непреодолимым препятствием. Одна из основных проблем, с которой сталкиваются при работе с ПВХ, − малая стабильность его макромолекул.

В процессе переработки, хранения и эксплуатации полимер подвергается действию многочисленных химических, биологических и физических факторов: тепла, света, кислорода, озона, влаги, агрессивных химических и биохимических агентов, механических нагрузок, которые могут приводить к существенному необратимому изменению физических и химических свойств полимера, к его старению, т.е. к потере комплекса полезных эксплуатационных свойств, и разрушению. Тем не менее, исключительно высокая экономическая эффективность производства и применение ПВХ в различных отраслях промышленности обусловила быстрый рост его выпуска во многих странах мира благодаря доступности и низкой стоимости исходного сырья, ценным физическим и физико-химическим свойством материалов и изделий из ПВХ.

При изготовлении материалов и изделий из ПВХ полимер сочетают с различными ингредиентами, выполняющих роль пластификаторов, стабилизаторов, лубрикантов (смазок), наполнителей, красящих веществ которые придают материалам или изделиям из ПВХ специфические свойства.

Из ПВХ получают как пластифицированные (мягкие и полужесткие), так и непластифицированные (жесткие) изделия.

Потребление пластифицированного ПВХ — изоляция и оболочки электропроводов и кабелей, мягкие листы и пленки, с/х назначения, упаковочные, облицовочные, линолеум, для получения искусственной кожи, гибкие трубы и шланги и тд.

Непластифицированный ПВХ находит применение в производстве жестких труб и фитингов (канализация, газо — и водоснабжение), листов и жестких пленок, в том числе светопрозрачных, декоративных, конструкционных, вытяжных шкафов, электротехнических изделий, пенопласта (звуко-, теплоизоляция, набивочный материал), емкости (банки, бутылки, флаконы), панели, профили, волокна и тд. Большое значение имеет использование ПВХ для предохранения трубопроводов химической аппаратуры, цистерн или резервуаров от воздействия хлора, соляной и серной кислот и других агрессивных сред.

Уже было сказано, что ПВХ как любой другой полимер, при хранении, переработке и эксплуатации подвержен различным видам старения. С этим наблюдают разнообразные химические превращения ПВХ. Большую роль в развитии процессов старения могут играть внутренние факторы — строение и структура макроцепей, причем часто можно наблюдать изменение структуры ПВХ за счет переориентации молекул, уменьшения внутренних напряжений, разрыва и сшивки полимерных цепей. Возможно так же испарение летучих компонентов, экстракция пластификаторов, поглощение воды, растворение, набухание и т.д.

Все изложенное выше предопределяет первостепенный интерес не только к вопросам совершенствования методов и технологии синтеза мономера и ПВХ. Разработки научных снов полимеризации хлористого винила и т.п., но и к вопросам стабилизации, принципом составления оптимальных рецептур, переработки ПВХ с целью обеспечения долговечности материалов или изделий из этого материала.

Основным сырьем для производства ПВХ служит винилхлорид (ВХ). Он является вторым по спросу и использованию после этилена мономером.

ВХ при комнатной температуре и атмосферном давлении представляет собой бесцветный газ с эфирным запахом, температура кипения равна — 13, 9ºС и плотность 970 кг/м3 . ВХ растворяется в ацетоне, этиловом спирте, ароматических и алифатических углеводородах, но в воде практически не растворим.

Вещество является чрезвычайно огнеопасным, его смеси с воздухом взрывоопасны; при горении выделяет раздражающие, токсичные и коррозионно-активные вещества, среди которых, в частности, обнаруживается крайне ядовитый фосген.

Температура вспышки: −78°С, температура самовоспламенения: 472°С. Пределы воспламенения в воздухе: 3,6-33%. Гашение пламени при горении винилхлорида производят только после остановки подачи газа, при этом используют воду на максимально возможном от очага возгорания расстоянии, создавая плотную туманоподобную завесу, а также охлаждая горячие поверхности.

ВХ оказывает комплексное токсическое воздействие на организм человека, вызывая поражение ЦНС, костной системы, системное поражение соединительной ткани, мозга, сердца. Поражает печень, вызывая ангиосаркому. Вызывает иммунные изменения и опухоли, оказывает канцерогенное, мутагенное и тератогенное действие. Многие исследования сообщают, что воздействие винилхлорида на человека вызывает рак в различных тканях и органах, включая печень (опухоли помимо ангиосаркомы), мозг, лёгкие, лимфатическую и гематопоэтическую систему (органы и ткани, вовлечённые в кровообразование). При этом можно отметить, что употребление этанола только усиливает канцерогенный эффект винилхлорида.

ХВ может быть получен различными методами:

Гидрохлорированием ацетилена в присутствии катализатора.

Пиролизом дихлорэтана или дегидрохлорированием щелочью в спиртовом растворе.

Высокотемпературным хлорированием этилена.

Оксихлорированием этилена.

Получение ХВ это в настоящее время практически единственный пример реального внедрения метода окислительного хлорирования углеводородов.

На первой стадии образуется 1,2 — дихлорэтан.

Далее полученный дихлорэтан подвергают пиролизу, образуется ХВ и HCl

Для использования HCl его отправляют на стадию окислительного хлорирования этилена для получения ПВХ.

ВХ хранится вдали от источников тепла и огня в жидком виде при температуре −14÷22°C в больших сферических металлических заземлённых ёмкостях с небольшой добавкой стабилизатора (например: гидрохинон). Ёмкости должны быть оснащены самозапорными клапанами, устройствами контроля давления и искрогасителями. Контейнер с веществом должен находиться в хорошо проветриваемых условиях при внешней температуре ниже 50°C. Необходимо избегать контакта с медью, любыми источниками огня или тепла, окислителями, каустической содой и активными металлами. Стабилизированный хлористый винил транспортируется в жидком виде в охлаждаемых стальных цистернах, которые предварительно должны быть тщательно высушены и продуты азотом.

Реакции с участием ХВ можно разделить на две группы. К первой группе относятся реакции с участием галогена, а ко второй группе те реакции которые идут по месту двойной связи.

Реакции с участием атома галогена.

Атом галогена в галогенопроизводных (галоген находится при атоме углерода при двойной связи) обладает низкой подвижностью, по этому такие реакции возможны с применением активных реагентов и катализаторов.

Отщепление галогеноводородов.

Отщепление HCl происходит под действием очень сильных оснований таких как металлический натрий в среде жидкого

mirznanii.com

что это такое? Технология производства поливинилхлорида и области применения

Если вы решили использовать в строительстве или ремонте поливинилхлорид, что это такое важно узнать до начала работ. Этот материал относится к синтетическим термопластичным текстурам.

Характеристики ПВХ

В условиях завода изготавливается ПВХ двух видов, первый из которых является пластифицированным, тогда как второй — непластифицированным. В последнем случае пластификатор не используется. Внешне ПВХ имеет вид порошка белого цвета, который не обладает запахом. Он имеет высокие качества прочности и свойства диэлектричности. Если вы решили приобрести поливинилхлорид, что это такое, необходимо узнать. Он устойчив к воздействию щелочей, минеральных масел, кислот, а также не растворяется в воде. Растворению и набуханию способствуют кетоны, эфиры, а также ароматические и хлорированные углеводороды. Материал стойко переносит окисление и почти не горит. Поливинилхлорид обладает не очень внушительными теплостойкими характеристиками, при воздействии температуры в 100 градусов он начинает разлагаться. Для того чтобы добиться теплостойкости и улучшить качества растворимости, ПВХ подвергается воздействию хлорирования.

Область использования

Сегодня достаточно широкое распространение нашел поливинилхлорид. Что это такое должен знать каждый домашний мастер и специалист в области строительства. Этот материал используется в медицине, заменяя стекло и резину. Таким образом, удалось получить одноразовые предметы. Благодаря химической стабильности и инертности, ПВХ обрел высокую популярность в упомянутой области. Продукция из него разнообразна и легко производима, а стоит гораздо дешевле ранее используемых материалов.

ПВХ используется и в транспортной промышленности. Его применяют при производстве дверных панелей, подлокотников, а также при создании кабельной изоляции. Именно благодаря этому автомобиль стал обладать более длительным сроком жизнедеятельности, который увеличился на шесть лет по сравнению с предыдущими показателями. Такой подход повысил безопасность транспорта, так как с помощью ПВХ удалось создать подушки безопасности, а также защитные панели, которые способны защитить пассажиров от получения травм при авариях.

Ремонт и строительство

Рассматривая поливинилхлорид, что это такое можно узнать из данной статьи. Этот материал используется сегодня в дизайнерских целях. Такая возможность появилась благодаря тому, что современная технология позволяет создавать из ПВХ изделия любой формы. Таким образом, удалось создавать элементы интерьера. Наиболее часто этот полимер можно встретить в строительстве. Из него получаются износоустойчивые, жесткие, легкие изделия, которые отлично справляются с коррозией и химическим воздействием. Такая высокая популярность в области строительства обусловлена еще и пожарной безопасностью, материал с трудом поддается возгоранию, а при устранении источника температуры прекращает гореть и тлеть. Именно поэтому подобные изделия можно использовать на объектах, к которым предъявляются требования по повышенной пожарной безопасности. Материал ПВХ отличается долговечностью, более 75 процентов труб, которые выполнены из него, демонстрируют жизнедеятельность более 40 лет.

Технология производства

Получение поливинилхлорида осуществляется методом радикальной полимеризации сырья, в качестве которого выступает винилхлорид. Наибольшее распространение в промышленности получил суспензионный способ, это обусловлено тем, что он обеспечивает высокую производительность. Подобная полимеризация производится по периодической системе. Винилхлорид, который содержится в количестве 0,02 — 0,05 процента в водной среде, используется в качестве основного компонента. Подготовленное сырье нагревается до 65 градусов, а после подвергается подобному воздействию для получения однородного продукта. Полимеризация происходит в каплях винилхлорида. В конечном итоге удается получить пористые микрогранулы. Производство полностью автоматизировано, тогда как полимеризация осуществляется в реакторах, объем которых превышает 200 кубических метров. После завершения полимеризации степень винилхлорида, который к этому времени прореагировал, доходит до 90 процентов. Элементы, которые оказались не задействованы, удаляются, тогда как сам ПВХ просеивается и просушивается под воздействием горячего воздуха. После чего происходит расфасовка. Поливинилхлорид, свойства которого были описаны выше, на последнем этапе преобразуется в винипласт или пластикат.

Конечные продукты ПВХ

Материал ПВХ может быть преобразован в винипласт. Он представляет собой жесткий продукт. Характеризуется высокой механической прочностью, устойчив к химическим воздействиям и водонепроницаем. Среди недостатков можно выделить низкую ударную прочность, плохую морозостойкость и незначительный порог эксплуатации. Что касается пластификатов, то это мягкие продукты, которые обладают значительной эластичностью. Им тоже свойственна водонепроницаемость и маслостойкость. Они отлично претерпевают воздействие всевозможных органических растворителей.

Заключение

Поливинилхлорид, трубы из которого производятся сегодня, выступает в качестве одного из распространенных материалов среди пластиков. Мировое производство составляет примерно 17 процентов от общего выпуска пластмасс, и занимает третье место среди полимеров. Изделия, выполненные из ПВХ, нашли свое практическое применение во многих отраслях хозяйства, промышленности, тяжелом машиностроении, медицине и сельском хозяйстве. Сегодня почти в каждом доме установлены пластиковые окна, а также используются изделия на основе описываемого материала. Именно широкое распространение указывает на отличные качественные характеристики вышеописанного материала, который обладает высокой прочностью, устойчивостью к внешним повреждениям и воздействиям разного характера.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *