Что делают из пластмассы примеры – Что сделано из пластмассы?

Как сделать ремонт квартиры самостоятельно?

Пластмассы в строительстве применяются как строительные материалы, как полуфабрикаты и как строительные конструкции.

Строительные материалы — это, например, массы для покрытия полов, уплотняющие массы для деформационных швов, добавки к растворам и бетону, а также клеи для керамической плитки. Полуфабрикаты — это, например, водоотводные трубы, дренирующие трубы, покрытия полов, рулонные гидроизоляционные материалы и плиты для тепло- и звукоизоляции. Строительные элементы — это, например, шахты световых фонарей, водосточные трубы и окна. Комплекты для ванных комнат также изготавливаются из пластмассы (рис. 1).

Рис. 1. Применение пластмасс (примеры)

Состав, свойства и описание

Пластмассы (или, более широко, синтетические материалы) — это материалы, изготавливаемые искусственно (синтетически) из продуктов нефте- и газопере-работки, а также из исходных веществ угля, извести, воды и воздуха. Почти все пластмассы содержат, как и природные органические вещества, в качестве важнейших элементов углерод и водород. Поэтому они относятся к органическим материалам. Имеются также синтетические материалы, у которых важнейшим элементом является кремний. К этой группе относятся силиконы.

Пластмассы, как и природные органические материалы, состоят из очень больших молекул, которые составлены из многих атомов. Поэтому их называют макромолекулами (по гречески макро — большой). Макромолекулы могут иметь нитеобразное

строение или строение в виде пространственной сетки.

Согласно DIN 7728 и ISO 1043 пластмассы имеют краткие обозначения, которые выведены из их химических наименований. Например, поливинилхлорид обозначают PVC, а фенолфор-мальдегидную смолу обозначают PF (табл. 1, 2, 3). Пластмассы — это полученные путем химического превращения (синтеза) органические, макромолекулярные материалы. Они состоят в основном из элементов углерода (С), водорода (Н), кислорода (О), азота (N), серы (S) и кремния (Si).

Форма, величина и расположение макромолекул, наряду с химическим составом, определяют свойства пластмасс. Синтетические материалы в массовом производстве получаются тремя способами синтеза: путем полимеризации, путем поликонденсации и полисложения.

При полимеризации почти одинаковые основные молекулы, называемые также мономерами, группируются в нитеобразные (цепные) макромолекулы. Основные молекулы — это ненасыщенные углеводородные соединения, как, например, этилен. После отделения парных соединений этих молекул они полимеризуются в длинные молекулы, или полимеры, этилен — в полиэтилен (рис. 2).

Рис. 2. Полимеризация (полиэтилен)

Важные полимеры — это полиэтилен (например, защитные пленки, трубы, рукава) и пливинилхлорид (например, дренажные трубы, покрытие полов и окантовочные профили).

При поликонденсации образуются макромолекулы путем соединения различных основных молекул, например фенола (С6Н5ОН) с формальдегидом (СН20), при одновременном отделении (конденсации) простых веществ, как, например, вода (Н20) (рис. 3). Важными поликонденсатами являются феноловая смола, мочевинно-формальдегидная смола и полиамиды.

Рис. 3. Поликонденсация (феноловая смола)

При полисложении образуются нитеобразные (цепные) или пространственносетчатые макромолекулы также за счет соединения различных основных молекул, например диалколи (спирты) (C

4Hg(OH)2) с диизоцианатами (C6H12(CNO)2), без отделения побочных продуктов. Важными материалами этого вида являются полиуретановые смолы (рис. 4).

Рис. 4. Полисложение (полиуретановая смола)

Путем соответствующего химического состава и метода получения синтетических материалов или путем смешения различных синтетических материалов можно получить материалы с практически любыми заданными свойствами.

Типичными свойствами синтетических материалов являются:

  • небольшая плотность,
  • различные механические свойства,
  • изоляция электричества,
  • теплоизоляция,
  • устойчивость против коррозии и химикатов.
Синтетические материалы:
  • хорошо принимают нужную форму и обрабатываются,
  • хорошо окрашиваются в массе,
  • имеют гладкую, декоративную поверхность.
Однако синтетические материалы обладают также свойствами, которые ограничивают их применение:
  • по большей части, малая устойчивость против высоких температур,
  • частично горят,
  • по большей части не обладают высокой прочностью и
  • отчасти неустойчивы против растворителей.

Высокая устойчивость против разложения синтетических материалов является преимуществом при их использовании, однако для их удаления это является недостатком. В связи с ростом производства синтетических материалов их утилизация стала проблемой защиты окружающей среды.

Виды

Пластмассы, как правило, подразделяются по их механическим свойствам и их поведению при нагревании на термопласты, дуропласты и эластомеры.

Термопласты

Термопласты — это синтетические материалы, которые при нагревании становятся мягкими, а при охлаждении снова твердеют. Они состоят из нитеобразных (цепных) макромолекул, которые в большинстве случаев между собой переплетаются как волокна фетра или могут быть связаны между собой (частично-кристаллическое строение).

При невысоких температурах цепные молекулы лежат плотно и почти неподвижно друг возле друга. Пластмасса твердая и хрупкая. С увеличением температуры цепи молекул начинают двигаться, и силы притяжения между ними становятся все меньше. Пластмасса становится эластичной. При дальнейшем нагревании силы притяжения уменьшаются так сильно, что отдельные молекулы начинают скользить относительно друг друга, пластмасса становится пластичной. Так как цепи молекул мешают друг другу в их движении при дальнейшем повышении температуры, то пластмасса становится только

вязкотекучей, но не газообразной. При охлаждении изменения состояния материала происходят в обратном порядке. Они могут повторяться сколько угодно, если только за счет перегрева не разорвутся цепи молекул, в результате чего наступает химическое разложение синтетического материала.

Рис. 5. Строение и поведение термопластов

Термопласты в их твердом состоянии могут обрабатываться резанием. В пластическом состоянии можно изменять их форму путем изгиба, вытяжки и выдувания. Если пластмасса мягкая, то ее применяют путем распыления, прессования, прокатки или вспенивания.

Рис. 6. Термопласты

Важными термопластами являются поливинилхлорид (PVC), поивинилаце-тат (PVAC), полистирол (PS), полиэтилен (РЕ), полиметилметакрилат или акриловое стекло (РММА), полиамид (РА), поликарбонат (PC) и полиизобутилен (PIB) (табл. 1).

Таблица 1. Важнейшие термопласты

Дуропласты

Дуропласты — это синтетические материалы, которые в затвердевшем состоянии и при сильном нагревании не размягчаются и не плавятся. Они состоят из макромолекул, которые, как правило, образуются путем поликонденсации из различных предварительно произведенных исходных продуктов. Макромолекулы дуропластов имеют пространственно-сетчатое строение (рис. 7).

Рис. 7. Строение и поведение дуропластов

Поставляемые, как правило, в жидком виде исходные продукты, например фенол и формальдегид, соединяются под воздействием тепла, давления или химических веществ, называемых отвердителями, и образуются дуропласты. Этот процесс твердения может быть прерван, но его нельзя повернуть обратно. Не совсем отвержденные дуропласты еще в большинстве случаев растворимы или расплавляемы. Процесс твердения можно продолжить и довести до полного твердения.

Рис. 8. Дуропласты

Свойства искусственных смол из дуропластов можно изменять для различных целей подмешиванием наполнителей, как, например, каменной муки, древесной муки или обрезков текстиля. Дуропластовые синтетические материалы могут обрабатываться пилой, напильником, рубанком с образованием стружки. Их можно склеивать и вспенивать, но нельзя сваривать. Не полностью затвердевшие искусственные смолы могут формоваться без стружек в формовочных прессах и там же твердеть под давлением. Наиболее важными дуропластами являются феноловые смолы, мочевиноформальдегидные смолы и меламиновые смолы, эпоксидные смолы, ненасыщенные полиэстровые смолы и полиуретаны (табл. 2).

Рис. 9. Структура пенопластов

Особое значение в строительстве имеют синтетические вспененные материалы (пенопласты). Они объединяют свойства пластмасс, как, например, стойкость против растительных и животных вредителей, со свойствами пенистых материалов. Пенопласты различают по виду синтетического материала, строению, механическому поведению и по методу изготовления. Вспененные материалы со структурой с закрытыми порами препятствуют воздухообмену и капиллярному действию. Поэтому их применяют преимущественно в качестве звукоизоляционных вкладышей. Вспененные материалы с открытыми порами подходят больше для звукопоглощения. Структурные — или интегральные пенопласты, преимущественно из полиуретана, имеют внутри закрытопористую, а снаружи плотную, почти беспористую структуру. Из них производят самонесущие конструкции, как, например, двери и стулья, а также имитацию деревянных балок и дверных полотен.

Таблица 2. Важные дуропласты

По механическому поведению различают твердые, полутвердые и упругомягкие пенопласты. Твердые пенопласты получают из феноловых мочевиноформальдегидных смол. Полиуретановые смолы могут применяться как для твердых, так и для мягких и упругих пенопластов.

Синтетические вспененные материалы изготавливаются в виде плит или формованных изделий на больших отливочных или шприцевальных установках. Часто полиуретан вспенивают из картушей с помощью распылительных пистолетов, приводимых в действие вручную или при помощи сжатого воздуха, получая «местную пену» прямо на стройплощадке. Так можно заполнять швы или пустоты, например монтажные шлицы, или укреплять дверные петли и другие детали (монтажная пена) (рис. 12).

Эластомеры

Эластомеры — это синтетические материалы с эластическими свойствами. Они легко изменяют форму; если напряжение снимается, они снова принимают свою первоначальную форму. Эластомеры отличаются от прочих эластичных синтетических материалов тем, что их эластичность, подобная резине, в значительной степени зависит от температуры. Так, например, силиконовый каучук остается упругим в диапазоне температур от —60 до +250 °С (табл. 3).

Таблица 3. Важные эластомеры

Эластомеры, также как и дуропласты, состоят из пространственно-сетчатых макромолекул. Однако молекулярная сетка у эластомеров имеет более широкие ячейки и более редкая, чем у дуропластов (рис. 10). При изменении формы ячейки раздвигаются, не разрушая места связи. После снятия напряжения ячейки, подобно резине, притягиваются в свое первоначальное положение, синтетический материал снова принимает свою первоначальную форму.

Рис. 10. Строение и поведение эластомеров

Силиконы

Силиконы относятся к группе синтетических материалов, которые имеют состав, отличный от остальных пластмасс, и в которых главным образом атомы углерода заменены атомами кремния. Свойства силиконов зависят от длины их макромолекул и от степени их сетчатости. Силиконы с нитеобразными (цепными) макромолекулами — это силиконовые масла, слабосетчатые макромолекулы дают силиконовые каучуки, а сильносетчатые макромолекулы — силиконовые смолы.

Силиконы — это маслянистые до резиноэластичных, прозрачные до молочно-матовых материалов. Они водоотталкивающие и температуроустойчивые от —90 до +180°С. Уже небольшие количества силиконового масла делают лаки, бумагу и текстиль водоотталкивающими. Растворы силиконовой смолы поэтому часто применяют как водоотталкивающие покрытия каменной кладки и бетона (рис. 11). Силиконовые каучуки можно также производить в вспененном виде. Силиконовые пенопласты в основном применяют для высокоценных мебельных работ.

Рис. 11. Нанесение силиконовой запечатывающей массы

Преимущественно применяемые в строительстве синтетические пенопласты состоят из дуропластов, как, например, из полиуретановых или феноловых смол. Они бывают одно-и двухкомпонентными и применяются для заполнения пустот и укрепления строительных конструкций (монтажная пена) (рис. 12).

Рис. 12. Запенивание шва двухкомпонентным пенистьм материалом

spravochnik-stroitelya.ru

Что такое пластмассы и как их получают? ⋆ AboutPLastics

Пластические массы (более распространенные названия пластмассы или пластики) – это синтетические материалы, получаемые в результате серии химических превращений (синтеза) полезных ископаемых, таких как нефть, газ или уголь.
Область знаний, изучающая и описывающая химические процессы получения пластических масс из углеводородов полезных ископаемых, называется нефтехимией. Суть нефтехимических процессов заключается в разделении углеводородного сырья на отдельные компоненты, которые, в свою очередь, являются исходным сырьем для получения пластмасс. Пластмассами называется широкий класс полимерных материалов, состоящий из длинных цепочек (макромолекул), которые, в свою очередь, состоят из множества повторяющих звеньев (мономеров). Благодаря подобному химическому строению пластмассы обладают комплексом уникальных свойств, выгодно отличающих их от традиционных материалов, таких как металл, стекло, древесина.

Термопласты и реактопласты. Отличия. Свойства

В зависимости от природы макромолекул различают два вида пластмасс: реактопласты и термопласты. Основой получения реактопластов являются натуральные или синтетические смолы. Характеризуются тем, что их макромолекулярные цепи соединены между собой частыми химическими связями, образовавшимися в результате отверждения.
Термопласты же состоят из длинных молекулярных цепей, которые соединяются между собой силами межмолекулярного взаимодействия.
Отличительной особенностью термопластов является их способность к многократному плавлению, что дает возможность их вторичной переработки. К термопластам относятся такие крупнотоннажные пластики как: полиэтилен, полипропилен, поливинилхлорид, полистирол, полиэтилентерефталат и ряд других.
Термопласты используются в качестве сырья для производства множества изделий в различных отраслях экономического хозяйства. Нам уже сложно представить себе современное здание без окон из ПВХ, садовые теплицы без листа из поликарбоната или полиэтиленовой пленки, автомобиль без деталей экстерьера и интерьера на основе полипропилена, продукты питания без упаковки из различных видов пластмасс, которые несем домой в полиэтиленовых пакетах. Однако далеко не все себе отчетливо представляют как получаются пластмассы, какие виды бывают, от чего зависят свойства того или иного пластика, какие изделия и с какими характеристиками можно получить. Об этом и многом другом Вы сможете узнать на страницах нашего проекта, а о том, какие этапы химических превращений проходят горючие ископаемые перед тем, как превратится в пластмассы, расскажем в данной статье.

Этапы получения пластмасс

Получение пластмасс – это сложный, многостадийный процесс, сопровождающийся химическими реакциями, который можно условно разделить на 3 основных этапа:
1. Фракционирование горючих ископаемых углеводородов на отдельные компоненты
2. Химическое превращение компонентов ископаемых УВ в мономеры
3. Химическое превращение мономеров в полимеры, которыми, в том числе, являются и пластмассы.
Основой сырьевой базой для получения пластиков являются ископаемые углеводороды (УВ), такие как нефть, попутный нефтяной газ (ПНГ), газовый конденсат и природный газ. Как уже упоминали, исходным сырьем для получения пластмасс являются отдельные компоненты природных ископаемых, для чего их подвергают сложным многоступенчатым процессам разделения и выделения ценных компонентов для нефтехимии. Схематично процесс выделения ценных сырьевых компонентов из горючих ископаемых можно изобразить следующим образом (рис. 1).

разделение нефти и газа на компоненты

Углеводороды добываются из недр земли нефтяными и газодобывающими компаниями. Поскольку УВ являются смесью различных веществ, то УВ направляют на дальнейшее разделение на компоненты.
1. Так, ископаемые УВ направляют на нефте- и газоперерабатывающие заводы (НПЗ и ГПЗ) где происходит первичное разделение сырья на компоненты. Основная цель заключается в разделении (фракционировании) УВ на группы составляющих их компонентов.
2. В результате нефтепереработки самой ценной фракцией для дальнейшего получения пластмасс является нафта (второе название — прямогонный бензин). Это смесь жидких УВ с длинной углеводородной цепи от С5 до С10.
Основным ценным сырьем для нефтехимии после разделения попутного нефтяного газа и природного газа на компоненты являются широкая фракция углеводородов (ШФЛУ) и этан. Поскольку ШФЛУ продолжает оставаться смесью различных газов ее подвергают дальнейшему разделению. Так получаются СУГ, которые представляют собой чистые газы или технические смеси такие как пропан-пропиленовая фракция (ППФ), бутан-бутиленовая фракция (ББФ) или смесь пропан-бутан технический (СПБТ).
Таким образом, после разделения УВ сырья на отдельные, ценные для дальнейшей переработки, компоненты нафта, ШФЛУ, СУГ и этан направляются в качестве исходного сырья в следующий передел – пиролиз.
3. Пиролиз – это важнейший процесс нефтехимии, в ходе которого получаются диеновые УВ (вещества с двойными связями в основной цепи), такие как этилен или пропилен (они же низшие алкены или олефины), крайне редко встречающиеся в свободном виде в недрах земли. Процесс проходит при высоких температурах (до 1200 ˚С) в специальных печах пиролиза. Ценным, эти вещества делают двойные связи, которые придают высокую реакционоспособность соединениям.
4. Следующим этапом процесса получения пластмасс является полимеризация. Химизм процесса заключается в формировании длинных молекулярных цепочек из повторяющихся элементарных звеньев олефинов. Как раз наличие двойных связей в низших олефинах дает возможность образования длинных макромолекулярных цепей полимера. В процессе полимеризации происходит разрыв одной двойной связи мономера, которая моментально реагирует с рядом находящимся подобным мономером, в свою очередь, который взаимодействует со следующим звеном и так далее. Подобные реакции носят название цепных реакций, в ходе которых первоначальная активная частица запускает рост и развитие всей полимерной цепочки. Физически процесс протекает в реакторе при определенной температуре, давлении и наличию каталитической системы, которая является инициатором процесса полимеризации.
5. Для большинства пластмасс заключительным этапом является гранулирование порошка, образовавшегося в ходе полимеризации, после которого гранулы пластика фасуются в мешки и/или биг-беги и складируются в ожидании отгрузки в адрес будущего покупателя.
Более подробно о каждом этапе получения пластмасс расскажем в следующих статьях, в которых будут детально описаны основы процессов получения важнейших веществ как сырья для производства пластических масс.

aboutplastics.ru

Пластмассы и природные полимеры

Полимеры состоят из небольших молекул, соединенных в длинные цепи. Пластмасса и синтетические волокна. например нейлон, — полимеры, полученные из содержащихся в нефти соединений. Помимо синтетических, существуют природные полимеры — резина, крахмал, шерсть, шелк и даже волосы человека. Пластик может принимать любую форму благодаря формовке.

Как делают пластмассу

Пластмассы — это синтетические полимеры, состоящие из органических соединений, входящих в состав нефти. Множество пластмасс, включая полиэтилен,  поливинилхлорид и полистирол получают из этилена — одного из алканов. Полиэтилен и полистирол можно расплавить и затем делать из них посуду. В тонкие листы полиэтилена упаковывают продукты.

Этилен — ненасыщенное соединение т.е. в нем есть двойные ковалентные связи, по которым могут присоединяться новые атомы. Термин «двойная связь» оз­начает, что у двух атомов есть две общие пары электронов. В состав молекулы этилена (C2H4) входят два атома углерода, соединенные двойной ковалентной связью. Двойная связь может открыться и присоединить новые атомы. При нагревании, высоком давлении и в присутствии катализатора молекулы этиле­на могут реагировать друг с другом. При этом двойные связи раскрываются, атомы углерода соединяются и образуют длинные цепочки — огромные молекулы по­лиэтилена. Такое соединение молекул называется полимеризацией. Небольшие молекулы, из которых состоит молекула полимера, называются мономерами. Гигантская молекула полиэтилена может содержать до 20 000 атомов углерода.  При замене некоторых атомов в мономерах на другие можно получать разные виды пластмасс. Поливинилхлорид (ПВХ) образуется при замещении атомов водорода в этилене атомами хлора: при этом образует­ся хлорэтилен. Молекула ПВХ состоит из длинной цепочки мономеров – молекул хлорэтилена.

Пластмассы делятся на две группы. Термопластичные пластмассы можно расплавить и использовать вновь, а термореактивные расплавить вновь нельзя. В термопластичных пластмассах полимерные цепочки не связанны между собой. В термореактивных пластмассах полимерные цепи жестко связаны друг с другом. Термопластичные пластмассы – такие, как полиэтилен, полистирол, нейлон, — гибкие, но не термостойкие. Эти пластмассы можно перерабатывать по нескольку раз, но пока это мало применяется. Термореактивные пластмассы используются только один раз. Они имеют жесткую структуру, они тверды и теплостойки. Эбонит, из кото­рого делают посуду, относится к термореактивным пластмассам.

Синтетические волокна

Из некоторых пластмасс, например из нейлона, полистирола и акрила, можно делать волокна. Их можно прясть, как шерсть и хлопок, делать из них одежду ковры, веревки и прочные ткани для парусов и парашютов. Синтетические волокна, например лайкра, гладкие и легкие. Они помогают уменьшить вес и трение, что важно для танцоров и спортсменов. Синтетические волокна прочнее и лег­че натуральных — шерсти, хлопка. К тому же из синтетических волокон, в отличие от натуральных, можно сделать очень длинные нити.

Свойства пластмасс

Здесь вы найдете описание множества ­полезных свойств пластмасс. Некоторые свойства пластмасс создают трудности. Пластмассы не подвержены гниению и коррозии, поэтому их нелегко уничтожить, а некоторые из них при горении выделяют ядовитые газы. Впрочем, сейчас уже разработаны новые сорта пластмасс, поддающихся биологическому разложению. Первые пластмассы были получены более 170 лет назад. Тогда был создан целлулоид, а позднее – бакелит. В начале XX века из бакелита делали корпуса радиоприемников и телефонов. Сейчас телефоны не делают из бакелита, а из значительно более легких материалов. Полиэтилен, полистирол и нейлон появились в 1930 годах. В упаковке из полистирола еда долго не остывает. Пенополистирол —   прекрасный изолятор, к тому же он очень легок. Из него делают упаковки для продуктов и бьющихся приборов. Современные паруса делают из чрезвычайно прочных и легких синтетических волокон, например майлара. Тефлон (политетрафторэтилен) делает поверхность сковородок гладкими, и к ним ничего не прилипает. Компакт-диски делают из поликарбоната. Затем их покрывают тонким слоем алюминия. Пластмассы не проводят электричество, поэтому из них делают вилки и розетки, а также изоляцию для проводов. В аэрокосмической промышленности используются композитные материалы – пластмассы, укрепленные стеклянным волокнами.

Природные полимеры

До изобретения пластмасс в текстильной промышленности использовались природные полимеры – шерсть, хлопок, джут. Молекулы природных полимеров, как и пластмасс, представляют собой длинные цепочки более простых молекул. Белки – тоже природные полимеры. ДНК, вещество, из которого состоят хромосомы, — природный полимер. Хромосомы находятся в составе ядер живых клеток. В них записана генетическая информация организма. Резину делают из природного полимера под названием латекс, млечного сока коры каучуконосных растений. После вулканизации — нагревания в присутствии серы — резина становится прочной. Вулканизация используется при производстве автомобильных шин.

www.polnaja-jenciklopedija.ru

Из чего делают пластик. Из одной нефти что ли.

Пластма́ссы (пласти́ческие ма́ссы, пла́стики) — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры) .   Исключительно широкое применение получили пластмассы на основе синтетических полимеров. Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формоваться и сохранять после охлаждения или отверждения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное. В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на термопласты и реактопласты.   Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа.   Пластические массы получают на основе высокомолекулярных соединений — полимеров. Их разделяют на два класса — термопласты и реактопласты. Основные механические характеристики пластмасс те же, что и для металлов.

Сначала — из нефти, газа, угля, древесины. А в цивилизованных странах более половины «пластика» делают из мусора — старых пакетов, бутылок, упаковок….

из смол, газов, высокомолекулярных углеродов, а также-сахаров, глюкозы и крахмаллов, целюлоза, уголь

Производство изделий из пластмасс, листового пластика <a rel=»nofollow» href=»http://sp-k.гu» target=»_blank»>http://sp-k.гu</a> Комплектующие к упаковке Кедер, китовый ус (регилин) Листовой пластик Пленка ПВХ Молния на основе ПВХ Услуги по литью изделий из пластмассы и изготовлению пресс-формы Товары хозяйственного назначения и прочие товары Электротовары <img src=»//otvet.imgsmail.ru/download/875a8375f91de049494d6073098e8a2f_99d762c3ef0d289d099e8c90e4014abb.jpg» data-big=»1″ data-lsrc=»//otvet.imgsmail.ru/download/100493680_80d9a77058f045d8f0ebf735d0bbc13f_120x120.jpg»>

touch.otvet.mail.ru

Что производят из переработанного пластика

Пластиковые изделия отличаются высокими эксплуатационными качествами, они надежны, долговечны, функциональны и доступны. Именно поэтому полимеры используют для производства самых разных изделий, начиная с бутылок и другой тары для пищевых продуктов, заканчивая решетками, сетками, пакетами и автомобильными запчастями. 

Чем больше таких продуктов каждый человек использует в повседневной жизни, тем больше общество создает пластиковых отходов, которые не просто засоряют окружающий нас мир, но еще и загрязняют планету, вредят ее обитателям. Полимеры отличаются высокой стойкостью к воздействиям среды, потому они практически не разлагаются и простые пластиковые бутылки могут столетиями лежать в земле. Это одна из важнейших причин, по которым следует организовывать по всему миру предприятия, занимающиеся переработкой отходов пластика.

Современные технологии позволяют перерабатывать полимерные отходы, производить с их помощью различные потребительские товары. Из вторичного сырья сегодня производят одежду, мебель и другие изделия.

Одежда из пластика

В настоящее время многие производители одежды стремятся показать экологичность своей продукции, заботу об окружающей среде и чистоте планеты в целом. Именно поэтому вторсырье очень часто используют для производства спортивной одежды, создатели которой подчеркивают использование переработанных отходов пластмасс.

Многие спортивные команды, в том числе, футбольные, выступают в спортивной одежде, произведенной из вторсырья. Это очень похвальная инициатива, которая становится все более актуальной в мире. Она способствуют популяризации идей безотходного производства, использования в повседневной жизни продукции из переработанного вторсырья.

Из переработанных пластиковых бутылок сегодня производят вторичный полиэстер, который подходит для изготовления джинсов, футболок и других вещей.

Пластиковая мебель

В сознании многих людей пластиковая мебель ассоциируется с низкой практичностью, дешевизной и неудобством. Но эти люди застряли в прошлом, сегодня из пластика, в том числе, из вторсырья, создают удобные, визуально привлекательные, элегантные столы и стулья, скамейки и другие предметы мебели, ничем не уступающие деревянным изделиям. При этом пластиковая мебель отличается замечательными эксплуатационными характеристиками, она не восприимчива к негативным воздействиям окружающей среды, не портится из-за влаги, не боится сырости и насекомых, плесени и грибка.

Переработка пластика позволяет создавать мебель из вторсырья для дома и для уличного использования. Во многих крупных городах устанавливают скамейки в парках, изготовленные из пластиковых бутылок. На создание одной скамейки уходит около 80-90 кг отходов пластмасс, а готовые изделия являются очень прочными, удобными и эстетичными. Мебель из вторсырья наглядно показывает преимущества переработки отходов по сравнению с обычной утилизацией.

Детали велосипедов

В последние годы вторсырье используют все чаще. Сегодня помимо мебели и повседневной одежды из переработанного пластика изготавливают различные детали для велосипедов, а иногда и для автомобилей.

Первый пластиковый велосипед был изготовлен обычными художниками, которые потратив около 200 бутылок ПЭТ, сделали раму, после чего им оставалось только собрать новое средство передвижения. Получившийся велосипед был не только экологически чистым, но еще и легким, прочным, надежным. Первое изобретение пришлось по вкусу обычным велосипедистам и сегодня производство пластиковых велосипедов активно развивается в мире.

Пластиковые дороги

Для покрытия дорог мы традиционно используем асфальт, но из-за его низкой экологичности по всему миру идут поиски альтернативных покрытий, с помощью которых можно было бы прокладывать автомобильные дороги. В Голландии придумали интересное пластиковое покрытие, которое собирается по типу любимых детьми конструкторов.

Пластиковые дороги имеют отличные перспективы в будущем. Во-первых, они идеально ровны. Во-вторых, представляют собой модульную систему, которую легко устанавливать и демонтировать. В-третьих, пластик отличается высокой стойкостью к внешним неблагоприятным воздействиям, не портится из-за дождя и солнца. В настоящее время дороги из переработанных бутылок — это только концепция, но с большой долей вероятности уже через несколько лет мы увидим первые дороги из переработанных пластмасс.

Изделия из переработанного пластика

Сегодня изделия из вторсырья используются повсеместно, их можно найти в жилых домах и в офисах, в парках, кафе, магазинах и других общественных заведениях. Переработка полимерных отходов открывает перед человечеством замечательные перспективы, так как позволяет не просто утилизировать мусор, но превращать его в полезные и удобные вещи.

Сегодня на рынке можно найти множество различных товаров из переработанных пластмасс: дыроколы, контейнеры, линейки, рюкзаки, кроссовки и т. д. По внешнему виду и эксплуатационным характеристикам такие изделия ничем не уступают обыкновенным товарам, а потому будут становиться все более популярными в будущем.

makulatur.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *